Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 7: e7870, 2019.
Article in English | MEDLINE | ID: mdl-31616604

ABSTRACT

Polymicrobial biofilms play important roles in oral and systemic infections. The oral plaque bacterium Streptococcus gordonii is known to attach to the hyphal cell wall of the fungus Candida albicans to form corn-cob like structures in biofilms. However, the role of C. albicans in formation of polymicrobial biofilms is not completely understood. The objective of this study was to determine the role of C. albicans transcription factors in regulation of polymicrobial biofilms and antibiotic tolerance of S. gordonii. The proteins secreted by C. albicans and S. gordonii in mixed planktonic cultures were determined using mass spectrometry. Antibiotic tolerance of S. gordonii to ampicillin and erythromycin was determined in mixed cultures and mixed biofilms with C. albicans. Additionally, biofilm formation of S. gordonii with C. albicans knock-out mutants of 45 transcription factors that affect cell wall integrity, filamentous growth and biofilm formation was determined. Furthermore, these mutants were also screened for antibiotic tolerance in mixed biofilms with S. gordonii. Analysis of secreted proteomes resulted in the identification of proteins being secreted exclusively in mixed cultures. Antibiotic testing showed that S. gordonii had significantly increased survival in mixed planktonic cultures with antibiotics as compared to single cultures. C. albicans mutants of transcription factors Sfl2, Brg1, Leu3, Cas5, Cta4, Tec1, Tup1, Rim101 and Efg1 were significantly affected in mixed biofilm formation. Also mixed biofilms of S. gordonii with mutants of C. albicans transcription factors, Tec1 and Sfl2, had significantly reduced antibiotic tolerance as compared to control cultures. Our data indicates that C. albicans may have an important role in mixed biofilm formation as well as antibiotic tolerance of S. gordonii in polymicrobial biofilms. C. albicans may play a facilitating role than being just an innocent bystander in oral biofilms and infections.

2.
PeerJ ; 6: e5685, 2018.
Article in English | MEDLINE | ID: mdl-30280048

ABSTRACT

BACKGROUND: Candida albicans is a commensal fungus that inhabits the oral mucosal surface and causes oral and systemic candidiasis. Oral candidiasis most commonly occurs in patients with AIDS, denture wearers and newborn children. Systemic candidiasis occurs mainly in immunocompromised patients and patients admitted to hospitals for prolonged periods. C. albicans homologous genes, DFG5 and DCW1, encode for two closely related cell wall proteins with putative glycosyltransferase enzyme activity and C-terminal GPI-anchors. Past studies have shown that individual DFG5 and DCW1 mutations are viable but simultaneous deletion of DFG5 and DCW1 in C. albicans results in lethality. However, the exact functions of these cell wall based enzymes, which represent potential drug targets, are not understood. METHODS: C. albicans DFG5/DCW1 heterologous and conditional double mutant strains were assessed for growth and biofilm formation in comparison to wild type and parental strains. Cell wall and heat stress susceptibility of the mutant and control strains were assessed using agar spotting assays. Growth was assessed under normal and osmotic stress conditions along with light microscopy imaging. Biofilm dry weight and microscopic imaging analysis of biofilms was performed. Hypha formation in response to serum was analyzed using light microscopy imaging. Western blot analysis of mutant strains and control strains was performed to assess Hog1 basal levels and phosphorylation status. RESULTS: Analysis of the heterologous mutants indicated that Dfg5p is more important for growth while Dcw1p appeared to play a role in cell wall integrity response. The conditional double mutant was observed to be less resistant to cell wall stress. However, growth of the mutants was similar under control and osmotic stress conditions. The mutants were also able to grow similar to wild type under heat stress. Biofilm formation was reduced in the mutants where DFG5 was deleted or suppressed. Hyphal morphogenesis was reduced although germ tube formation was observed in the biofilms of the mutant strains. Basal Hog1 protein levels were reduced or absent in the DFG5 and DCW1 mutants. However, osmotic stress was able to induce Hog1 protein levels comparable to wild type. Hog1 phosphorylation appeared to be slightly reduced although not significantly. In addition to biofilm assays, serum dose response imaging analysis indicated that hyphae formation in DFG5 and DCW1 mutants was defective. CONCLUSIONS: These data indicate that DFG5 and DCW1 are required for hyphal morphogenesis and biofilm formation in C. albicans. These functions may be regulated via basal Hog1 MAPK which is required for transcriptional regulation of chitin synthesis.

3.
Eukaryot Cell ; 14(8): 792-803, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26048011

ABSTRACT

A biochemical pathway for the incorporation of cell wall protein into the cell wall of Neurospora crassa was recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into the Candida albicans cell wall. Using endoglycosidases, we show that C. albicans cell wall proteins are cross-linked into the cell wall via their N-linked outer chain mannans. We further demonstrate that the Dfg5p and Dcw1p α-1,6-mannanases are needed for the incorporation of cell wall glycoproteins into the C. albicans cell wall. Our results support the hypothesis that the Dfg5p and Dcw1p α-1,6-mannanases incorporate cell wall glycoproteins into the C. albicans cell wall by cross-linking outer chain mannans into the cell wall glucan-chitin matrix.


Subject(s)
Candida albicans/metabolism , Cell Wall/metabolism , Fungal Proteins/metabolism , Mannans/metabolism , Mannosyltransferases/metabolism , Membrane Glycoproteins/metabolism , Chitin/metabolism , Galactose/analogs & derivatives , Glucans/metabolism , Neurospora crassa/metabolism
4.
PLoS One ; 9(10): e110603, 2014.
Article in English | MEDLINE | ID: mdl-25333968

ABSTRACT

Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes) are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.


Subject(s)
Cell Communication/genetics , Fungal Proteins/genetics , Neurospora crassa/growth & development , Neurospora crassa/genetics , Autophagy/genetics , Chromatin Assembly and Disassembly/genetics , Fungal Proteins/biosynthesis , Gene Expression Regulation, Fungal , Mutation , Signal Transduction/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...