Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Rep ; 12(1): 21373, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36494570

ABSTRACT

In the Japanese hagfish Eptatretus burgeri, 16 chromosomes (eliminated [E]-chromosomes) have been lost in somatic cells (2n = 36), which is equivalent to approx. 21% of the genomic DNA in germ cells (2n = 52). At least seven of the 12 eliminated repetitive DNA families isolated in eight hagfish species were selectively amplified in the germline genome of this species. One of them, EEEb1 (eliminated element of E. burgeri 1) is exclusively localized on all E-chromosomes. Herein, we identified four novel eliminated repetitive DNA families (named EEEb3-6) through PCR amplification and suppressive subtractive hybridization (SSH) combined with Southern-blot hybridization. EEEb3 was mosaic for 5S rDNA and SINE elements. EEEb4 was GC-rich repeats and has one pair of direct and inverted repeats, whereas EEEb5 and EEEb6 were AT-rich repeats with one pair and two pairs of sub-repeats, respectively. Interestingly, all repeat classes except EEEb3 were transcribed in the testes, although no open reading frames (ORF) were identified. We conducted fluorescence in situ hybridization (FISH) to examine the chromosomal localizations of EEEb3-6 and EEEb2, which was previously isolated from the germline genome of E. burgeri. All sequences were only found on all EEEb1-positive E-chromosomes. Copy number estimation of the repeated elements by slot-blot hybridization revealed that (i) the EEEb1-6 family members occupied 39.9% of the total eliminated DNA, and (ii) a small number of repeats were retained in somatic cells, suggesting that there is incomplete elimination of the repeated elements. These results provide new insights into the mechanisms involved in the chromosome elimination and the evolution of E-chromosomes.


Subject(s)
Hagfishes , Animals , Base Sequence , DNA, Ribosomal , Germ Cells , In Situ Hybridization, Fluorescence , Repetitive Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...