Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 14(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38254709

ABSTRACT

This study identified proteomic changes in the seeds of two tolerant (SB-DT3 and SB-DT2) and two sensitive (Merlot and Stampede) common bean genotypes in response to terminal drought stress. Differentially expressed proteins (DEPs) were abundant in the susceptible genotype compared to the tolerant line. DEPs associated with starch biosynthesis, protein-chromophore linkage, and photosynthesis were identified in both genotypes, while a few DEPs and enriched biological pathways exhibited genotype-specific differences. The tolerant genotypes uniquely showed DEPs related to sugar metabolism and plant signaling, while the sensitive genotypes displayed more DEPs involved in plant-pathogen interaction, proteasome function, and carbohydrate metabolism. DEPs linked with chaperone and signal transduction were significantly altered between both genotypes. In summary, our proteomic analysis revealed both conserved and genotype-specific DEPs that could be used as targets in selective breeding and developing drought-tolerant common bean genotypes.


Subject(s)
Phaseolus , Phaseolus/genetics , Droughts , Proteomics , Seeds/genetics , Genotype
2.
Front Public Health ; 10: 821892, 2022.
Article in English | MEDLINE | ID: mdl-35265575

ABSTRACT

Marsh grasses have been used as efficient tools for phytoremediation and are known to play key roles in maintaining ecosystem functions by reducing the contamination of coastlines. This study was initiated to understand how human activities in wetlands can impact ion-heavy metal concentrations in relation to native and invasive marsh grasses. The study site, Blackbird Creek (BBC) is a tidal wetland that experiences agricultural, fishing, recreational, residential and other anthropogenic activities throughout the year. Heavy metals cadmium, arsenic, and lead in the soils and marsh grasses were monitored along with the ion compositions of soils. The main objective of this study was to understand if the marsh soils containing monotypic stands of native (Spartina) and non-native (Phragmites) vegetation display similar levels of heavy metals. Differences were observed in the concentrations of heavy metals at study sites with varying marsh vegetation types, and in soils containing vegetation and no vegetation. The soils with dense Spartina and Phragmites stands were anaerobic whereas soil at the boat ramp site was comparatively less anaerobic and also had increased levels of cadmium. Heavy metal concentrations in soil and Phragmites leaves were inversely correlated whereas they were positively correlated in Spartina sites. Electrical conductivity and pH levels in soil also showed increased cadmium and arsenic concentrations. These findings collectively infer that human activities and seasonal changes can increase soil complexities affecting the bioavailability of metals.


Subject(s)
Arsenic , Metals, Heavy , Cadmium , Ecosystem , Humans , Metals, Heavy/analysis , Poaceae/chemistry , Soil/chemistry , Wetlands
3.
PLoS One ; 15(12): e0242229, 2020.
Article in English | MEDLINE | ID: mdl-33270659

ABSTRACT

This study identified Vibrio parahaemolyticus in oyster and seawater samples collected from Delaware Bay from June through October of 2016. Environmental parameters including water temperature, salinity, dissolved oxygen, pH, and chlorophyll a were measured per sampling event. Oysters homogenate and seawater samples were 10-fold serially diluted and directly plated on CHROMagarᵀᴹ Vibrio medium. Presumptive V. parahaemolyticus colonies were counted and at least 20% of these colonies were selected for molecular chracterization. V. parahaemolyticus isolates (n = 165) were screened for the presence of the species-specific thermolabile hemolysin (tlh) gene, the pathogenic thermostable direct hemolysin (tdh)/ thermostable related hemolysin (trh) genes, the regulatory transmembrane DNA-binding gene (toxR), and V. parahaemolyticus metalloprotease (vpm) gene using a conventional PCR. The highest mean levels of the presumptive V. parahaemolyticus were 9.63×103 CFU/g and 1.85×103 CFU/mL in the oyster and seawater samples, respectively, during the month of July. V. parahaemolyticus levels in oyster and seawater samples were significantly positively correlated with water temperature. Of the 165 isolates, 137 (83%), 110 (66.7%), and 108 (65%) were tlh+, vpm+, and toxR+, respectively. Among the V. parahaemolyticus (tlh+) isolates, 7 (5.1%) and 15 (10.9%) were tdh+ and trh+, respectively, and 24 (17.5%), only oyster isolates, were positive for both genes. Potential pathogenic strains that possessed tdh and/or trh were notably higher in oyster (39%) than seawater (15.6%) isolates. The occurrence of total V. parahaemolyticus (tlh+) was not necessarily proportional to the potential pathogenic V. parahaemolyticus. Co-occurrence of the five genetic markers were observed only among oyster isolates. The co-occurrence of the gene markers showed a relatedness potential of tdh occurrence with vpm. We believe exploring the role of V. parahaemolyticus metalloprotease and whether it is involved in the toxic activity of the thermostable direct hemolysin (TDH) protein can be of significance. The outcomes of this study will provide some foundation for future studies regarding pathogenic Vibrio dynamics in relation to environmental quality.


Subject(s)
Environmental Monitoring , Seafood/microbiology , Seawater/microbiology , Vibrio parahaemolyticus/pathogenicity , Animals , Bays , Delaware , Hemolysin Proteins/genetics , Humans , Ostreidae/microbiology , Vibrio parahaemolyticus/isolation & purification
4.
Appl Environ Microbiol ; 86(23)2020 11 10.
Article in English | MEDLINE | ID: mdl-32978135

ABSTRACT

Oyster and seawater samples were collected from five sites in the Chesapeake Bay, MD, and three sites in the Delaware Bay, DE, from May to October 2016 and 2017. Abundances and detection frequencies for total and pathogenic Vibrio parahaemolyticus and Vibrio vulnificus were compared using the standard most-probable-number-PCR (MPN-PCR) assay and a direct-plating (DP) method on CHROMagar Vibrio for total (tlh+ ) and pathogenic (tdh+ and trh+ ) V. parahaemolyticus genes and total (vvhA) and pathogenic (vcgC) V. vulnificus genes. The colony overlay procedure for peptidases (COPP) assay was evaluated for total Vibrionaceae DP had high false-negative rates (14 to 77%) for most PCR targets and was deemed unsatisfactory. Logistic regression models of the COPP assay showed high concordances with MPN-PCR for tdh+ and trh+V. parahaemolyticus and vvhA+V. vulnificus in oysters (85.7 to 90.9%) and seawater (81.1 to 92.7%) when seawater temperature and salinity were factored into the model, suggesting that the COPP assay could potentially serve as a more rapid method to detect vibrios in oysters and seawater. Differences in total Vibrionaceae and pathogenic Vibrio abundances between state sampling sites over different collection years were contrasted for oysters and seawater by MPN-PCR. Abundances of tdh+ and trh+V. parahaemolyticus were ∼8-fold higher in Delaware oysters than in Maryland oysters, whereas abundances of vcgC+V. vulnificus were nearly identical. For Delaware oysters, 93.5% were both tdh+ and trh+, compared to only 19.2% in Maryland. These results indicate that pathogenic V. parahaemolyticus was more prevalent in the Delaware Bay than in the Chesapeake Bay.IMPORTANCE While V. parahaemolyticus and V. vulnificus cause shellfish-associated morbidity and mortality among shellfish consumers, current regulatory assays for vibrios are complex, time-consuming, labor-intensive, and relatively expensive. In this study, the rapid, simple, and inexpensive COPP assay was identified as a possible alternative to MPN-PCR for shellfish monitoring. This paper shows differences in total Vibrionaceae and pathogenic vibrios found in seawater and oysters from the commercially important Delaware and Chesapeake Bays. Vibrio parahaemolyticus isolates from the Delaware Bay were more likely to contain commonly recognized pathogenicity genes than those from the Chesapeake Bay.


Subject(s)
Bays/microbiology , Ostreidae/microbiology , Seawater/microbiology , Vibrio parahaemolyticus/isolation & purification , Vibrio vulnificus/isolation & purification , Animals , Colony Count, Microbial , Delaware , Geography , Maryland , Seasons , Vibrio parahaemolyticus/classification , Vibrio vulnificus/classification
5.
Food Environ Virol ; 11(2): 101-112, 2019 06.
Article in English | MEDLINE | ID: mdl-30706411

ABSTRACT

Eastern oysters (Crassostrea virginica) from three locations along the Delaware Bay were surveyed monthly from May to October 2017 for levels of total Vibrio parahaemolyticus, pathogenic strains of V. parahaemolyticus and Vibrio vulnificus, and for strain-specific bacteriophages against vibrios (vibriophages). The objectives were to determine (a) whether vibriophages against known strains or serotypes of clinical and environmental vibrios were detectable in oysters from the Delaware Bay and (b) whether vibriophage presence or absence corresponded with Vibrio abundances in oysters. Host cells for phage assays included pathogenic V. parahaemolyticus serotypes O3:K6, O1:KUT (untypable) and O1:K1, as well as clinical and environmental strains of V. vulnificus. Vibriophages against some, but not all, pathogenic V. parahaemolyticus serotypes were readily detected in Delaware Bay oysters. In July, abundances of total and pathogenic V. parahaemolyticus at one site spiked to levels exceeding regulatory guidelines. Phages against three V. parahaemolyticus host serotypes were detected in these same oysters, but also in oysters with low V. parahaemolyticus levels. Serotype-specific vibriophage presence or absence did not correspond with abundances of total or pathogenic V. parahaemolyticus. Vibriophages were not detected against three V. vulnificus host strains, even though V. vulnificus were readily detectable in oyster tissues. Selected phage isolates against V. parahaemolyticus showed high host specificity. Transmission electron micrographs revealed that most isolates were ~ 60-nm diameter, non-tailed phages. In conclusion, vibriophages were detected against pandemic V. parahaemolyticus O3:K6 and O1:KUT, suggesting that phage monitoring in specific host cells may be a useful technique to assess public health risks from oyster consumption.


Subject(s)
Bacteriophages/physiology , Ostreidae/microbiology , Shellfish/microbiology , Vibrio parahaemolyticus/virology , Animals , Delaware , Food Contamination/analysis , Vibrio parahaemolyticus/physiology , Vibrio vulnificus/physiology , Vibrio vulnificus/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...