Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 271, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443375

ABSTRACT

In this Data Descriptor, we present county-level electricity outage estimates at 15-minute intervals from 2014 to 2022. By 2022 92% of customers in the 50 US States, Washington DC, and Puerto Rico are represented. These data have been produced by the Environment for Analysis of Geo-Located Energy Information (EAGLE-ITM), a geographic information system and data visualization platform created at Oak Ridge National Laboratory to map the population experiencing electricity outages every 15 minutes at the county level. Although these data do not cover every US customer, they represent the most comprehensive outage information ever compiled for the United States. The rate of coverage increases through time between 2014 and 2022. We present a quantitative Data Quality Index for these data for the years 2018-2022 to demonstrate temporal changes in customer coverage rates by FEMA region and indicators of data collection gaps or other errors.

2.
Energy Build ; 259: 111847, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35035062

ABSTRACT

The COVID-19 pandemic has significantly affected people's behavioral patterns and schedules because of stay-at-home orders and a reduction of social interactions. Therefore, the shape of electrical loads associated with residential buildings has also changed. In this paper, we quantify the changes and perform a detailed analysis on how the load shapes have changed, and we make potential recommendations for utilities to handle peak load and demand response. Our analysis incorporates data from before and after the onset of the COVID-19 pandemic, from an Alabama Power Smart Neighborhood with energy-efficient/smart devices, using around 40 advanced metering infrastructure data points. This paper highlights the energy usage pattern changes between weekdays and weekends pre- and post-COVID-19 pandemic times. The weekend usage patterns look similar pre- and post-COVID-19 pandemic, but weekday patterns show significant changes. We also compare energy use of the Smart Neighborhood with a traditional neighborhood to better understand how energy-efficient/smart devices can provide energy savings, especially because of increased work-from-home situations. HVAC and water heating remain the largest consumers of electricity in residential homes, and our findings indicate an even further increase in energy use by these systems.

3.
J Biomed Inform ; 124: 103941, 2021 12.
Article in English | MEDLINE | ID: mdl-34737093

ABSTRACT

We present EPIsembleVis, a web-based comparative visual analysis tool for evaluating the consistency of multiple COVID-19 prediction models. Our approach analyzes a collection of COVID-19 predictions from different epidemiological models as an ensemble and utilizes two metrics to quantify model performance. These metrics include (a) prediction uncertainty (represented as the dispersion of predictions in each ensemble) and (b) prediction error (calculated by comparing individual model predictions with the recorded data). Through an interactive visual interface, our approach provides a data-driven workflow for (a) selecting and constructing the COVID-19 model prediction ensemble based on the spatiotemporal overlap of available predictions of multiple epidemiological models, (b) quantifying the model performance using both the uncertainty of each model prediction ensemble, and the error of each ensemble member that represents individual model predictions, and (c) visualizing the spatiotemporal variability in the projection performance of individual models using a suite of novel ensemble visualization techniques, such as the data availability map, a spatiotemporal textured-tile calendar, multivariate rose chart, and time-series leaflet glyph. We demonstrate the capability of our ensemble visual interface through a case study that investigates the performance of weekly COVID-19 predictions, which are provided through the COVID-19 Forecast Hub UMass-Amherst Influenza Forecasting Center of Excellence [47] for the United States and United States Territories. The EPIsembleVis tool is implemented using open-source web technologies and adaptive system design, rendering it interoperable with Elasticsearch and Kibana for automatically ingesting COVID-19 predictions from online repositories, and it is generalizable for analyzing worldwide projections from more epidemiological models.


Subject(s)
COVID-19 , Epidemiological Models , Forecasting , Humans , SARS-CoV-2 , Uncertainty , United States
4.
Emerg Infect Dis ; 27(3): 767-778, 2021.
Article in English | MEDLINE | ID: mdl-33622460

ABSTRACT

To increase situational awareness and support evidence-based policymaking, we formulated a mathematical model for coronavirus disease transmission within a regional population. This compartmental model accounts for quarantine, self-isolation, social distancing, a nonexponentially distributed incubation period, asymptomatic persons, and mild and severe forms of symptomatic disease. We used Bayesian inference to calibrate region-specific models for consistency with daily reports of confirmed cases in the 15 most populous metropolitan statistical areas in the United States. We also quantified uncertainty in parameter estimates and forecasts. This online learning approach enables early identification of new trends despite considerable variability in case reporting.


Subject(s)
Coronavirus Infections/epidemiology , Epidemics , Forecasting/methods , Bayes Theorem , Coronavirus , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Epidemics/prevention & control , Humans , Incidence , Models, Theoretical , Uncertainty , United States/epidemiology
5.
medRxiv ; 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-32743595

ABSTRACT

To increase situational awareness and support evidence-based policy-making, we formulated a mathematical model for COVID-19 transmission within a regional population. This compartmental model accounts for quarantine, self-isolation, social distancing, a non-exponentially distributed incubation period, asymptomatic individuals, and mild and severe forms of symptomatic disease. Using Bayesian inference, we have been calibrating region-specific models daily for consistency with new reports of confirmed cases from the 15 most populous metropolitan statistical areas in the United States and quantifying uncertainty in parameter estimates and predictions of future case reports. This online learning approach allows for early identification of new trends despite considerable variability in case reporting. ARTICLE SUMMARY LINE: We report models for regional COVID-19 epidemics and use of Bayesian inference to quantify uncertainty in daily predictions of expected reporting of new cases, enabling identification of new trends in surveillance data.

6.
ArXiv ; 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32743021

ABSTRACT

To increase situational awareness and support evidence-based policy-making, we formulated two types of mathematical models for COVID-19 transmission within a regional population. One is a fitting function that can be calibrated to reproduce an epidemic curve with two timescales (e.g., fast growth and slow decay). The other is a compartmental model that accounts for quarantine, self-isolation, social distancing, a non-exponentially distributed incubation period, asymptomatic individuals, and mild and severe forms of symptomatic disease. Using Bayesian inference, we have been calibrating our models daily for consistency with new reports of confirmed cases from the 15 most populous metropolitan statistical areas in the United States and quantifying uncertainty in parameter estimates and predictions of future case reports. This online learning approach allows for early identification of new trends despite considerable variability in case reporting. We infer new significant upward trends for five of the metropolitan areas starting between 19-April-2020 and 12-June-2020.

SELECTION OF CITATIONS
SEARCH DETAIL
...