Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Allergy ; 79(4): 894-907, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38279910

ABSTRACT

BACKGROUND: Nasal epithelial cells are important regulators of barrier function and immune signaling; however, in allergic rhinitis (AR) these functions can be disrupted by inflammatory mediators. We aimed to better discern AR disease mechanisms using transcriptome data from nasal brushing samples from individuals with and without AR. METHODS: Data were drawn from a feasibility study of individuals with and without AR to Timothy grass and from a clinical trial evaluating 16 weeks of treatment with the following: dupilumab, a monoclonal antibody that binds interleukin (IL)-4Rα and inhibits type 2 inflammation by blocking signaling of both IL-4/IL-13; subcutaneous immunotherapy with Timothy grass (SCIT), which inhibits allergic responses through pleiotropic effects; SCIT + dupilumab; or placebo. Using nasal brushing samples from these studies, we defined distinct gene signatures in nasal tissue of AR disease and after nasal allergen challenge (NAC) and assessed how these signatures were modulated by study drug(s). RESULTS: Treatment with dupilumab (normalized enrichment score [NES] = -1.73, p = .002) or SCIT + dupilumab (NES = -2.55, p < .001), but not SCIT alone (NES = +1.16, p = .107), significantly repressed the AR disease signature. Dupilumab (NES = -2.55, p < .001), SCIT (NES = -2.99, p < .001), and SCIT + dupilumab (NES = -3.15, p < .001) all repressed the NAC gene signature. CONCLUSION: These results demonstrate type 2 inflammation is an important contributor to the pathophysiology of AR disease and that inhibition of the type 2 pathway with dupilumab may normalize nasal tissue gene expression.


Subject(s)
Antibodies, Monoclonal, Humanized , Rhinitis, Allergic , Transcriptome , Humans , Rhinitis, Allergic/genetics , Rhinitis, Allergic/therapy , Allergens , Inflammation , Phleum , Interleukin-13/metabolism , Immunotherapy
2.
Sci Rep ; 12(1): 14932, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056118

ABSTRACT

IgA plays an important early neutralizing role after SARS-CoV-2 infection. Systemically administered vaccines typically produce an IgM/IgG predominant response. We evaluated the serum anti-spike (anti-S) IgG, anti-nucleocapsid (anti-N) IgG and anti-S IgA response following vaccination against SARS-CoV-2 in a cohort of first-responders. Among the 378 completely vaccinated participants, 98% were positive for anti-S IgG and 96% were positive for anti-S IgA. Nine percent were positive for anti-N IgG suggesting prior exposure to SARS-CoV-2. No statistically significant difference was seen in IgA response based on prior evidence infection (p = 0.18). Ninety-eight of those receiving the Moderna vaccine (98%) were positive for anti-S IgA as compared to 91% of those who received the Pfizer vaccine (p = 0.0009). The high proportion of participants observed to have a positive anti-S IgA response after vaccination suggests that the vaccines elicit a systemic response characterized by elevated levels of both IgG and IgA.


Subject(s)
COVID-19 , Emergency Responders , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Vaccination
4.
Genome Biol ; 21(1): 108, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32393311

ABSTRACT

BACKGROUND: Ubiquitously expressed CTCF is involved in numerous cellular functions, such as organizing chromatin into TAD structures. In contrast, its paralog, CTCFL, is normally only present in the testis. However, it is also aberrantly expressed in many cancers. While it is known that shared and unique zinc finger sequences in CTCF and CTCFL enable CTCFL to bind competitively to a subset of CTCF binding sites as well as its own unique locations, the impact of CTCFL on chromosome organization and gene expression has not been comprehensively analyzed in the context of CTCF function. Using an inducible complementation system, we analyze the impact of expressing CTCFL and CTCF-CTCFL chimeric proteins in the presence or absence of endogenous CTCF to clarify the relative and combined contribution of CTCF and CTCFL to chromosome organization and transcription. RESULTS: We demonstrate that the N terminus of CTCF interacts with cohesin which explains the requirement for convergent CTCF binding sites in loop formation. By analyzing CTCF and CTCFL binding in tandem, we identify phenotypically distinct sites with respect to motifs, targeting to promoter/intronic intergenic regions and chromatin folding. Finally, we reveal that the N, C, and zinc finger terminal domains play unique roles in targeting each paralog to distinct binding sites to regulate transcription, chromatin looping, and insulation. CONCLUSION: This study clarifies the unique and combined contribution of CTCF and CTCFL to chromosome organization and transcription, with direct implications for understanding how their co-expression deregulates transcription in cancer.


Subject(s)
CCCTC-Binding Factor/metabolism , Chromatin Assembly and Disassembly , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Animals , Embryonic Stem Cells , Female , Humans , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...