Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 30(6): 065707, 2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30523900

ABSTRACT

Resistive switching (RS) devices are considered as the most promising alternative to conventional random access memories. They interestingly offer effective properties in terms of device scalability, low power-consumption, fast read/write operations, high endurance and state retention. Moreover, neuromorphic circuits and synapse-like devices are envisaged with RS modeled as memristors, opening the route toward beyond-Von Neumann computing architectures and intelligent systems. This work investigates how the RS properties of zinc oxide thin films are related to both sputtering deposition process and device configuration, i.e. valence change memory and electrochemical metallization memory (ECM). Different devices, with an oxide thickness ranging from 50-250 nm, are fabricated and deeply characterized. The electrical characterization evidences that, differently from typical nanoscale amorphous oxides employed for resistive RAMs (HfO x , WO x , etc), sub-micrometric thicknesses of polycrystalline ZnO layers with ECM configuration are needed to achieve the most reliable devices. The obtained results are deeply discussed, correlating the RS mechanism to material nanostructure.

2.
Adv Sci (Weinh) ; 4(7): 1700036, 2017 07.
Article in English | MEDLINE | ID: mdl-28725530

ABSTRACT

Organic, inorganic or hybrid devices in the liquid state, kept in a fixed volume by surface tension or by a confining membrane that protects them from a harsh environment, could be used as biologically inspired autonomous robotic systems with unique capabilities. They could change shape according to a specific exogenous command or by means of a fully integrated adaptive system, and provide an innovative solution for many future applications, such as space exploration in extreme or otherwise challenging environments, post-disaster search and rescue in ground applications, compliant wearable devices, and even in the medical field for in vivo applications. This perspective provides an initial assessment of existing capabilities that could be leveraged to pursue the topic of "Smart Fluid Systems" or "Liquid Engineered Systems".

3.
J Colloid Interface Sci ; 498: 306-312, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28343128

ABSTRACT

Stable highly crystalline titanium dioxide colloids are of paramount importance for the establishment of a solution-processable library of materials that could help in bringing the advantages of digital printing to the world of photocatalysis and solar energy conversion. Nano-sized titanium dioxide in the anatase phase was synthesized by means of hydrothermal methods and treated with hydrogen peroxide to form Peroxy-Titanium Complexes (PTCs). The influence of hydrogen peroxide on the structural, optical and rheological properties of titanium dioxide and its colloidal solutions were assessed and a practical demonstration of a low temperature compliant digitally printed anatase thin film given.

4.
Sci Rep ; 7: 41957, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28165040

ABSTRACT

Vanadium doped ZnO (VZO) thin films were grown by RF magnetron sputtering, starting from a ZnO:V ceramic target. The crystal structure, chemical composition, electric and piezoelectric properties of the films were investigated either on the as-grown thin films or after a post-deposition rapid thermal annealing (RTA) treatment performed at 600 °C for different lengths of time (1 and 5 min) in an oxygen atmosphere. Substitutional doping of Zn2+ with V3+ and V5+ ions strongly deteriorated the hexagonal wurtzite ZnO structure of the as-grown thin films due to lattice distortion. The resulting slight amorphization led to a poor piezoelectric response and higher resistivity. After the RTA treatment, strong c-axis oriented VZO thin films were obtained, together with a partial conversion of the starting V3+ ions into V5+. The improvement of the crystal structure and the stronger polarity of both V3+ - O and V5+ - O chemical bonds, together with the corresponding easier rotation under the application of an external electric field, positively affected the piezoelectric response and increased conductivity. This was confirmed by closed-loop butterfly piezoelectric curves, by a maximum d33 piezoelectric coefficient of 85 pm·V-1, and also by ferroelectric switching domains with a well-defined polarization hysteresis curve, featuring a residual polarization of 12.5 µC∙cm-2.

5.
Ultrason Sonochem ; 19(4): 877-82, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22236507

ABSTRACT

Hydrophilic magnetite nanoparticles in the size range 30-10nm are easily and rapidly prepared under ultrasonic irradiation of Fe(OH)(2) in di- and tri-ethylene glycol/water solution with volume ratio varying between 7:3 and 3:7. Structural (XRD) and morphological (SEM) characterization reveal good crystalline and homogeneous particles whereas, when solvothermally prepared, the particles are inhomogeneous and aggregated. The sonochemically prepared particles are versatile, i.e. well suited to covalently bind molecules because of the free glycol hydroxylic groups on their surface or exchange the diethylene or triethylene glycol ligand. They can be easily transferred in hydrophobic solvents too. Room-temperature magnetic hysteresis properties measured by means of Vibrating Sample Magnetometer (VSM) display a nearly superparamagnetic character. The sonochemical preparation is easily scalable to meet industrial demand.


Subject(s)
Ferrosoferric Oxide/chemical synthesis , Nanoparticles/chemistry , Ultrasonics , Ferrosoferric Oxide/chemistry , Hydrophobic and Hydrophilic Interactions , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...