Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 709994, 2021.
Article in English | MEDLINE | ID: mdl-34504492

ABSTRACT

The outcome of the recent Antibody Mediated Prevention (AMP) trials that tested infusion of the broadly neutralizing antibody (bnAb) VRC01 provides proof of concept for blocking infection from sensitive HIV-1 strains. These results also open up the possibility that triple combinations of bnAbs such as PGT121, PGDM1400, as well as long-lasting LS variants such as VRC07-523 LS, have immunoprophylactic potential. PGT121 and PGDM1400 target the HIV-1 V3 and V2 glycan regions of the gp120 envelope protein, respectively, while VRC07-523LS targets the HIV-1 CD4 binding site. These bnAbs demonstrate neutralization potency and complementary breadth of HIV-1 strain coverage. An important clinical trial outcome is the accurate measurement of in vivo concentrations of passively infused bnAbs to determine effective doses for therapy and/or prevention. Standardization and validation of this testing method is a key element for clinical studies as is the ability to simultaneously detect multiple bnAbs in a specific manner. Here we report the development of a sensitive, specific, accurate, and precise multiplexed microsphere-based assay that simultaneously quantifies the respective physiological concentrations of passively infused bnAbs in human serum to ultimately define the threshold needed for protection from HIV-1 infection.


Subject(s)
Broadly Neutralizing Antibodies/blood , HIV Antibodies/blood , HIV-1/immunology , Humans , Limit of Detection , Microspheres , Reproducibility of Results
2.
Sci Rep ; 11(1): 6769, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33762584

ABSTRACT

We report on further development of the agroinfiltratable Tobacco mosaic virus (TMV)-based overexpression (TRBO) vector to deliver CRISPR/Cas9 components into plants. First, production of a Cas9 (HcoCas9) protein from a binary plasmid increased when co-expressed in presence of suppressors of gene silencing, such as the TMV 126-kDa replicase or the Tomato bushy stunt virus P19 protein. Such suppressor-generated elevated levels of Cas9 expression translated to efficient gene editing mediated by TRBO-G-3'gGFP expressing GFP and also a single guide RNA targeting the mgfp5 gene in the Nicotiana benthamiana GFP-expressing line 16c. Furthermore, HcoCas9 encoding RNA, a large cargo insert of 4.2 kb, was expressed from TRBO-HcoCas9 to yield Cas9 protein again at higher levels upon co-expression with P19. Likewise, co-delivery of TRBO-HcoCas9 and TRBO-G-3'gGFP in the presence of P19 also resulted in elevated levels percentages of indels (insertions and deletions). These data also revealed an age-related phenomenon in plants whereby the RNA suppressor P19 had more of an effect in older plants. Lastly, we used a single TRBO vector to express both Cas9 and a sgRNA. Taken together, we suggest that viral RNA suppressors could be used for further optimization of single viral vector delivery of CRISPR gene editing parts.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Silencing , Genetic Vectors/genetics , RNA Interference , RNA, Guide, Kinetoplastida , Tobacco Mosaic Virus/genetics , CRISPR-Associated Protein 9/metabolism , Gene Expression , Gene Order , Gene Transfer Techniques , Genetic Engineering , Plants, Genetically Modified , Plasmids/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
3.
Plant Methods ; 13: 106, 2017.
Article in English | MEDLINE | ID: mdl-29213298

ABSTRACT

BACKGROUND: Several high-throughput molecular genetic analyses rely on high-quality genomic DNA. Copurification of other molecules can negatively impact the functionality of plant DNA preparations employed in these procedures. Isolating DNA from agronomically important crops, such as sugarcane, rice, citrus, potato and tomato is a challenge due to the presence of high fiber, polysaccharides, or secondary metabolites. We present a simplified, rapid and reproducible SDS-based method that provides high-quality and -quantity of DNA from small amounts of leaf tissue, as required by the emerging biotechnology and molecular genetic applications. RESULTS: We developed the TENS-CO method as a simplified SDS-based isolation procedure with sequential steps of purification to remove polysaccharides and polyphenols using 2-mercaptoethanol and potassium acetate, chloroform partitioning, and sodium acetate/ethanol precipitation to yield high-quantity and -quality DNA consistently from small amounts of tissue (0.15 g) for different plant species. The method is simplified and rapid in terms of requiring minimal manipulation, smaller extraction volume, reduced homogenization time (20 s) and DNA precipitation (one precipitation for 1 h). The method has been demonstrated to accelerate screening of large amounts of plant tissues from species that are rich in polysaccharides and secondary metabolites for Southern blot analysis of reporter gene overexpressing lines, pathogen detection by quantitative PCR, and genotyping of disease-resistant plants using marker-assisted selection. CONCLUSION: To facilitate molecular genetic studies in major agronomical crops, we have developed the TENS-CO method as a simple, rapid, reproducible and scalable protocol enabling efficient and robust isolation of high-quality and -quantity DNA from small amounts of tissue from sugarcane, rice, citrus, potato, and tomato, thereby reducing significantly the time and resources used for DNA isolation.

SELECTION OF CITATIONS
SEARCH DETAIL
...