Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Cloning ; 9: 17-29, 2016.
Article in English | MEDLINE | ID: mdl-27217783

ABSTRACT

Breast cancer, the leading cause of cancer among females, is supported by the presence of a rare subset of undifferentiated cells within the tumor, identified as breast cancer stem cells (BCSCs). BCSCs underlie the mechanisms of tumor initiation and sustenance and are implicated in the dissemination of the primary tumor to metastatic sites, as they have been found circulating in the blood of breast cancer patients. The discovery of BCSCs has generated a great amount of interest among the scientific community toward their isolation, molecular characterization, and therapeutic targeting. In this review, after summarizing the literature on molecular characterization of BCSCs and methodologies used for their isolation, we will focus on recent data supporting their molecular and functional heterogeneity. Additionally, following a synopsis of the latest approaches for BCSC targeting, we will specifically emphasize on the therapeutic use of naïve or engineered normal stem cells in the treatment of breast cancer and present contradictory findings challenging their safety.

2.
BMC Cancer ; 15: 399, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25962645

ABSTRACT

BACKGROUND: CTCs expressing variable levels of epithelial and mesenchymal markers in breast cancer have previously been reported. However, no information exists for keratin expression levels of CTCs in association with disease status, whereas assays for the characterization of transitional EMT phenotypes of CTCs in breast cancer are rather lacking. We investigated the correlation between keratin expression of CTCs and patients' outcome and characterized the EMT status of CTCs via the establishment of a numerical "ratio" value of keratin and vimentin expression levels on a single cell basis. METHODS: Keratin expression was evaluated in 1262 CTCs from 61 CTC-positive patients with metastatic breast cancer, using analysis of images obtained through the CellSearch System. For the determination of vimentin/keratin (vim/K) ratios, expression levels of keratin and vimentin were measured in cytospin preparations of luminal (MCF-7 and T47D) and basal (MDA.MB231 and Hs578T) breast cancer cell lines and 110 CTCs from 5 CTC-positive patients using triple immunofluorescence laser scanning microscopy and image analysis. RESULTS: MCF-7 and T47D displayed lower vim/K ratios compared to MDA.MB231 and Hs578T cells, while MCF-7 cells that had experimentally undergone EMT were characterized by varying intermediate vim/K ratios. CTCs were consisted of an heterogeneous population presenting variable vim/K values with 46% of them being in the range of luminal breast cancer cell lines. Keratin expression levels of CTCs detected by the CellSearch System correlated with triple negative (p = 0.039) and ER-negative (p = 0.025) breast cancer, and overall survival (p = 0.038). CONCLUSIONS: Keratin expression levels of CTCs correlate with tumor characteristics and clinical outcome. Moreover, CTCs display significant heterogeneity in terms of the degree of EMT phenotype that probably reflects differential invasive potential. The assessment of the vim/K ratios as a surrogate marker for the EMT status of CTCs merits further investigation as a prognostic tool in breast cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Epithelial-Mesenchymal Transition , Keratins/metabolism , Neoplastic Cells, Circulating/metabolism , Vimentin/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells , Middle Aged , Survival Analysis , Young Adult
3.
Curr Cancer Drug Targets ; 15(3): 256-69, 2015.
Article in English | MEDLINE | ID: mdl-25669721

ABSTRACT

Breast cancer stem cells (BCSCs) represent a heterogeneous subpopulation of rare cells within breast cancer tumors, displaying an enhanced tumor initiating capability and underlying disease progression and therapy resistance. Unraveling their phenotypic, biological and functional profile is a major challenge in the context of diminishing patient mortality. In this review, following a brief description on how cancer stem cells (CSCs) and their microenvironment contribute to tumor preservation and heterogeneity, we summarize the current literature regarding the molecular signature of BCSCs either localized in the primary tumor or circulating in the blood of breast cancer patients. We present recent data on specific stem and epithelial-to-mesenchymal transition (EMT) markers designating the BCSC subpopulation and underline their pathogenic significance. The molecular characterization of BCSCs has promoted the design of novel therapeutic approaches targeting the BCSC subpopulation which are currently being experimentally and clinically evaluated. We highlight recent advances on the development of novel BCSC-targeting therapeutic strategies including the inhibition of cell signaling pathways, differentiation therapy, metabolic interference and nucleotide-, bio- and nano-technology based approaches. Eliminating the chemo- and radio-resistance properties of breast cancer tumor cells via BCSC-directed therapies, combined to conventional therapeutic approaches, will augment the effectiveness of breast cancer treatment and improve the clinical outcome of breast cancer patients.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Epithelial-Mesenchymal Transition , Female , Humans , Neoplastic Cells, Circulating , Neoplastic Stem Cells/drug effects , Tumor Microenvironment
4.
Biochem Cell Biol ; 92(4): 287-95, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25053513

ABSTRACT

Cancer cells often exhibit characteristic aberrations in their nuclear architecture, which are indicative of their malignant potential. In this study, we have examined the nuclear and cytoskeletal composition, attachment configuration dynamics, and osmotic or drug treatment response of invasive (Hs578T and MDA-MB-231) and non-invasive (MCF-10A and MCF-7) breast cancer cell lines. Unlike MCF-10A and MCF-7, Hs578T and MDA-MB-231 cells showed extensive nuclear elasticity and deformability and displayed distinct kinetic profiles during substrate attachment. The nuclear shape of MCF-10A and MCF-7 cells remained almost unaffected upon detachment, hyperosmotic shock, or cytoskeleton depolymerization, while Hs578T and MDA-MB-231 revealed dramatic nuclear contour malformations following actin reorganization.


Subject(s)
Actin Cytoskeleton/metabolism , Breast Neoplasms/pathology , Actin Cytoskeleton/pathology , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Nucleus/pathology , Cell Nucleus Shape , Cell Nucleus Size , Female , Homeostasis , Humans , Neoplasm Invasiveness , Protein Stability
5.
Int J Biochem Cell Biol ; 43(4): 487-95, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21182980

ABSTRACT

Basement membranes constitute architecturally complex extracellular matrix (ECM) protein networks of great structural and regulatory importance. Recently, a novel group of basement membrane proteins, Fras1 (Fraser syndrome protein (1) and the Fras1-related extracellular matrix proteins Frem1, Frem2 and Frem3, has emerged. They comprise components of the sublamina densa region and contribute to embryonic epithelial-mesenchymal integrity. Fras1/Frem share common polypeptide repetitive motifs with possible interactive and organizing functions. Mutations in genes encoding Fras1, Frem1 and Frem2 are causative for dermal-epidermal detachment in the plane of sublamina densa and have been identified in different classes of mouse bleb mutants, the murine model of human Fraser syndrome, the hallmark phenotypic characteristics of which are embryonic skin blistering, cryptophthalmos and renal agenesis. Indeed, defects in FRAS1 and FREM2 have been identified in Fraser syndrome patients. The phenotypic similarity of mouse bleb mutant strains can be attributed to the fact that Fras1, Frem1 and Frem2 have been experimentally shown to interact, forming a mutually stabilized protein complex, while Frem3, which has not yet been associated with any of the existing known mutations, operates in a more independent fashion. Fras1/Frem have been recently proposed to compensate for the activity of collagen VII, a major anchoring component of the sublamina densa, the levels of which rise only during late embryonic life. By focusing on the aforementioned data, in this review we will summarize the current knowledge about Fraser syndrome proteins and describe their contribution to basement membrane biology.


Subject(s)
Basement Membrane/metabolism , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Animals , Collagen Type VII/metabolism , Disease , Extracellular Matrix Proteins/genetics , Humans , Mutation , Phenotype
6.
Exp Cell Res ; 313(5): 910-20, 2007 Mar 10.
Article in English | MEDLINE | ID: mdl-17240369

ABSTRACT

Frem1 belongs to a family of structurally related extracellular matrix proteins of which Fras1 is the founding member. Mutations in Fras1 and Frem1 have been identified in mouse models for Fraser syndrome, which display a strikingly similar embryonic skin blistering phenotype due to impaired dermal-epidermal adhesion. Here we show that Frem1 originates from both epithelial and mesenchymal cells, in contrast to Fras1 that is exclusively derived from epithelia. However, both proteins are localized in an absolutely overlapping fashion in diverse epithelial basement membranes. At the ultrastructural level, Frem1 exhibits a clustered arrangement in the sublamina densa coinciding with fibrillar structures reminiscent of anchoring fibrils. Furthermore, in addition to its extracellular deposition, around E16, Frem1 displays an intracellular distribution in distinct epidermal cell types such as the periderm layer and basal keratinocytes. Since periderm cells are known to participate in temporary epithelial fusions like embryonic eyelid closure, defective function of Frem1 in these cells could provide a molecular explanation for the "eyes open at birth" phenotype, a feature unique for Frem1 deficient mouse mutants. Finally, we demonstrate loss of Frem1 localization in the basement membrane but not in periderm cells in the skin of Fras1(-/-) embryos. Taken together, our findings indicate that besides a cooperative function with Fras1 in embryonic basement membranes, Frem1 can also act independently in processes related to epidermal differentiation.


Subject(s)
Basement Membrane/metabolism , Extracellular Matrix Proteins/metabolism , Gene Expression Regulation, Developmental , Mesoderm/metabolism , Animals , Cell Differentiation , Cell Line , Embryonic Development , Epidermis/embryology , Epidermis/physiology , Epithelial Cells/metabolism , Extracellular Matrix Proteins/genetics , Eyelids/embryology , Eyelids/physiology , Humans , Mesoderm/cytology , Mice , Mice, Knockout , Molecular Sequence Data , Tissue Distribution , Transfection
7.
Gene Expr Patterns ; 7(4): 381-8, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17251066

ABSTRACT

The Fras1/Frem gene family encodes for structurally similar, developmentally regulated extracellular matrix proteins. Mutations in Fras1, Frem1 and Frem2 have been identified in different classes of mouse bleb mutants, while defects in the human orthologs FRAS1 and FREM2 are causative for Fraser syndrome. The hallmark phenotypic feature of bleb mice is embryonic skin blistering due to dermal-epidermal detachment. The similarity of the phenotypic characteristics among the bleb mouse mutants, together with the fact that Fras1/Frem proteins are co-localized in embryonic epithelial basement membranes, suggest that they operate in a common pathway. Here, we report for the first time the immunofluorescence pattern of Frem3 and provide a comparative analysis of the spatiotemporal localization of all Fras1/Frem proteins during mouse embryonic development. We demonstrate their overall co-localization in embryonic epithelial basement membranes, with emphasis on areas of phenotypic interest such as eyelids, limbs, kidneys, lungs and organs of the gastrointestinal tract and the central nervous system. We further studied collagen VII, impairment of which produces dystrophic epidermolysis bullosa, a postnatal skin blistering disorder. We show that basement membrane levels of collagen VII rise at late embryonic life, concomitant with descending Fras1/Frem immunolabeling.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Development , Extracellular Matrix Proteins/analysis , Animals , Basement Membrane/embryology , Basement Membrane/metabolism , Collagen Type VII/genetics , Embryonic Development/genetics , Epithelium/embryology , Epithelium/metabolism , Extracellular Matrix Proteins/genetics , Mice , Mice, Mutant Strains , Phenotype , Skin/embryology , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...