Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Article in English | MEDLINE | ID: mdl-38926763

ABSTRACT

BACKGROUND: Sarcopenia, a group of muscle-related disorders, leads to the gradual decline and weakening of skeletal muscle over time. Recognizing the pivotal role of gastrointestinal conditions in maintaining metabolic homeostasis within skeletal muscle, we hypothesize that the effectiveness of the myogenic programme is influenced by the levels of gastrointestinal hormones in the bloodstream, and this connection is associated with the onset of sarcopenia. METHODS: We first categorized 145 individuals from the Emergency Room of Taipei Veterans General Hospital into sarcopenia and non-sarcopenia groups, following the criteria established by the Asian Working Group for Sarcopenia. A thorough examination of specific gastrointestinal hormone levels in plasma was conducted to identify the one most closely associated with sarcopenia. Techniques, including immunofluorescence, western blotting, glucose uptake assays, seahorse real-time cell metabolic analysis, flow cytometry analysis, kinesin-1 activity assays and qPCR analysis, were applied to investigate its impacts and mechanisms on myogenic differentiation. RESULTS: Individuals in the sarcopenia group exhibited elevated plasma levels of glucagon-like peptide 1 (GLP-1) at 1021.5 ± 313.5 pg/mL, in contrast to non-sarcopenic individuals with levels at 351.1 ± 39.0 pg/mL (P < 0.05). Although it is typical for GLP-1 levels to rise post-meal and subsequently drop naturally, detecting higher GLP-1 levels in starving individuals with sarcopenia raised the possibility of GLP-1 influencing myogenic differentiation in skeletal muscle. Further investigation using a cell model revealed that GLP-1 (1, 10 and 100 ng/mL) dose-dependently suppressed the expression of the myogenic marker, impeding myocyte fusion and the formation of polarized myotubes during differentiation. GLP-1 significantly inhibited the activity of the microtubule motor kinesin-1, interfering with the translocation of glucose transporter 4 (GLUT4) to the cell membrane and the dispersion of mitochondria. These impairments subsequently led to a reduction in glucose uptake to 0.81 ± 0.04 fold (P < 0.01) and mitochondrial adenosine triphosphate (ATP) production from 25.24 ± 1.57 pmol/min to 18.83 ± 1.11 pmol/min (P < 0.05). Continuous exposure to GLP-1, even under insulin induction, attenuated the elevated glucose uptake. CONCLUSIONS: The elevated GLP-1 levels observed in individuals with sarcopenia are associated with a reduction in myogenic differentiation. The impact of GLP-1 on both the membrane translocation of GLUT4 and the dispersion of mitochondria significantly hinders glucose uptake and the production of mitochondrial ATP necessary for the myogenic programme. These findings point us towards strategies to establish the muscle-gut axis, particularly in the context of sarcopenia. Additionally, these results present the potential of identifying relevant diagnostic biomarkers.

2.
Mater Today Bio ; 26: 101058, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38681057

ABSTRACT

Biomechanical cues could effectively govern cell gene expression to direct the differentiation of specific stem cell lineage. Recently, the medium viscosity has emerged as a significant mechanical stimulator that regulates the cellular mechanical properties and various physiological functions. However, whether the medium viscosity can regulate the mechanical properties of human mesenchymal stem cells (hMSCs) to effectively trigger osteogenic differentiation remains uncertain. The mechanism by which cells sense and respond to changes in medium viscosity, and regulate cell mechanical properties to promote osteogenic lineage, remains elusive. In this study, we demonstrated that hMSCs, cultured in a high-viscosity medium, exhibited larger cell spreading area and higher intracellular tension, correlated with elevated formation of actin stress fibers and focal adhesion maturation. Furthermore, these changes observed in hMSCs were associated with activation of TRPV4 (transient receptor potential vanilloid sub-type 4) channels on the cell membrane. This feedback loop among TRPV4 activation, cell spreading and intracellular tension results in calcium influx, which subsequently promotes the nuclear localization of NFATc1 (nuclear factor of activated T cells 1). Concomitantly, the elevated intracellular tension induced nuclear deformation and promoted the nuclear localization of YAP (YES-associated protein). The concurrent activation of NFATc1 and YAP significantly enhanced alkaline phosphatase (ALP) for pre-osteogenic activity. Taken together, these findings provide a more comprehensive view of how viscosity-induced alterations in biomechanical properties of MSCs impact the expression of osteogenesis-related genes, and ultimately promote osteogenic lineage.

3.
Biomaterials ; 308: 122551, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593710

ABSTRACT

Sarcopenia, a prevalent muscle disease characterized by muscle mass and strength reduction, is associated with impaired skeletal muscle regeneration. However, the influence of the biomechanical properties of sarcopenic skeletal muscle on the efficiency of the myogenic program remains unclear. Herein, we established a mouse model of sarcopenia and observed a reduction in stiffness within the sarcopenic skeletal muscle in vivo. To investigate whether the biomechanical properties of skeletal muscle directly impact the myogenic program, we established an in vitro system to explore the intrinsic mechanism involving matrix stiffness control of myogenic differentiation. Our findings identify the microtubule motor protein, kinesin-1, as a mechano-transduction hub that senses and responds to matrix stiffness, crucial for myogenic differentiation and muscle regeneration. Specifically, kinesin-1 activity is positively regulated by stiff matrices, facilitating its role in transporting mitochondria and enhancing translocation of the glucose transporter GLUT4 to the cell surface for glucose uptake. Conversely, the softer matrices significantly suppress kinesin-1 activity, leading to the accumulation of mitochondria around nuclei and hindering glucose uptake by inhibiting GLUT4 membrane translocation, consequently impairing myogenic differentiation. The insights gained from the in-vitro system highlight the mechano-transduction significance of kinesin-1 motor proteins in myogenic differentiation. Furthermore, our study confirms that enhancing kinesin-1 activity in the sarcopenic mouse model restores satellite cell expansion, myogenic differentiation, and muscle regeneration. Taken together, our findings provide a potential target for improving muscle regeneration in sarcopenia.


Subject(s)
Kinesins , Regeneration , Sarcopenia , Animals , Kinesins/metabolism , Mice , Sarcopenia/metabolism , Sarcopenia/pathology , Muscle, Skeletal/metabolism , Mice, Inbred C57BL , Cell Differentiation , Muscle Development , Male , Glucose Transporter Type 4/metabolism , Extracellular Matrix/metabolism , Mitochondria/metabolism , Biomechanical Phenomena , Glucose/metabolism
4.
Acta Biomater ; 163: 287-301, 2023 06.
Article in English | MEDLINE | ID: mdl-36328121

ABSTRACT

Within the heterogeneous tissue architecture, a comprehensive understanding of how cell shapes regulate cytoskeletal mechanics by adjusting focal adhesions (FAs) signals to correlate with the lineage commitment of mesenchymal stromal cells (MSCs) remains obscure. Here, via engineered extracellular matrices, we observed that the development of mature FAs, coupled with a symmetrical pattern of radial fiber bundles, appeared at the right-angle vertices in cells with square shape. While circular cells aligned the transverse fibers parallel to the cell edge, and moved them centripetally in a counter-clockwise direction, symmetrical bundles of radial fibers at the vertices of square cells disrupted the counter-clockwise swirling and bridged the transverse fibers to move centripetally. In square cells, the contractile force, generated by the myosin IIA-enriched transverse fibers, were concentrated and transmitted outwards along the symmetrical bundles of radial fibers, to the extracellular matrix through FAs, and thereby driving FA organization and maturation. The symmetrical radial fiber bundles concentrated the transverse fibers contractility inward to the linkage between the actin cytoskeleton and the nuclear envelope. The tauter cytoskeletal network adjusted the nuclear-actomyosin force balance to cause nuclear deformability and to increase nuclear translocation of the transcription co-activator YAP, which in turn modulated the switch in MSC commitment. Thus, FAs dynamically respond to geometric cues and remodel actin cytoskeletal network to re-distribute intracelluar tension towards the cell nucleus, and thereby controlling YAP mechanotransduction signaling in regulating MSC fate decision. STATEMENT OF SIGNIFICANCE: We decipher how cellular mechanics is self-organized depending on extracellular geometric features to correlate with mesenchymal stromal cell lineage commitment. In response to geometry constrains on cell morphology, symmetrical radial fiber bundles are assembled and clustered depending on the maturation state of focal adhesions and bridge with the transverse fibers, and thereby establishing the dynamic cytoskeletal network. Contractile force, generated by the myosin-IIA-enriched transverse fibers, is transmitted and dynamically drives the retrograde movement of the actin cytoskeletal network, which appropriately adjusts the nuclear-actomyosin force balance and deforms the cell nucleus for YAP mechano-transduction signaling in regulating mesenchymal stromal cell fate decision.


Subject(s)
Actins , Mesenchymal Stem Cells , Actins/metabolism , Actomyosin/metabolism , Mechanotransduction, Cellular , Cell Shape , Osteogenesis , Cell Differentiation , Transcription Factors/metabolism
5.
Front Cell Dev Biol ; 10: 809738, 2022.
Article in English | MEDLINE | ID: mdl-35265612

ABSTRACT

Up to 50% of head and neck squamous cell carcinoma (HNSCC) patients have lymph node (LN) metastasis, resulting in poor survival rate. Numerous studies have supported the notion that the alterations of gene expression and mechanical properties of cancer cells play an important role in cancer metastasis. However, which genes and how they regulate the biomechanical properties of HNSCC cells to promote LN metastasis remains elusive. In this study, we used an LN-metastatic mouse model in vivo to generate an LN-metastatic head and neck squamous cell carcinoma cell line and compared the differences in the biomolecular and biomechanical properties of LN-metastatic and non-metastatic cells. Our results showed that LN-metastatic cells had a higher level of Snail expression compared to non-LN-metastatic cells. The higher Snail expression promoted the cellular invasion capability in confined environments, mainly by increasing the longitudinal strain of the cell nuclei, which could be attributed to the stronger cell traction force and softer nuclear stiffness. These two biomechanical changes were correlated, respectively, to a larger amount of focal adhesion and less amount of nuclear lamins. Taken together, our works revealed not only the biomechanical profiles of LN-metastatic cells but also the corresponding biomolecular expressions to pinpoint the key process in LN metastasis.

6.
Cancers (Basel) ; 13(8)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921319

ABSTRACT

Cell migration is critical for regional dissemination and distal metastasis of cancer cells, which remain the major causes of poor prognosis and death in patients with colorectal cancer (CRC). Although cytoskeletal dynamics and cellular deformability contribute to the migration of cancer cells and metastasis, the mechanisms governing the migratory ability of cancer stem cells (CSCs), a nongenetic source of tumor heterogeneity, are unclear. Here, we expanded colorectal CSCs (CRCSCs) as colonospheres and showed that CRCSCs exhibited higher cell motility in transwell migration assays and 3D invasion assays and greater deformability in particle tracking microrheology than did their parental CRC cells. Mechanistically, in CRCSCs, microRNA-210-3p (miR-210) targeted stathmin1 (STMN1), which is known for inducing microtubule destabilization, to decrease cell elasticity in order to facilitate cell motility without affecting the epithelial-mesenchymal transition (EMT) status. Clinically, the miR-210-STMN1 axis was activated in CRC patients with liver metastasis and correlated with a worse clinical outcome. This study elucidates a miRNA-oriented mechanism regulating the deformability of CRCSCs beyond the EMT process.

7.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33670996

ABSTRACT

Human mesenchymal stem cells (hMSCs) possess potential of bone formation and were proposed as ideal material against osteoporosis. Although interrogation of directing effect on lineage specification by physical cues has been proposed, how mechanical stimulation impacts intracellular viscoelasticity during osteogenesis remained enigmatic. Cyto-friendly 3D matrix was prepared with polyacrylamide and conjugated fibronectin. The hMSCs were injected with fluorescent beads and chemically-induced toward osteogenesis. The mechanical properties were assessed using video particle tracking microrheology. Inverted epifluorescence microscope was exploited to capture the Brownian trajectory of hMSCs. Mean square displacement was calculated and transformed into intracellular viscoelasticity. Two different stiffness of microspheres (12 kPa, 1 kPa) were established. A total of 45 cells were assessed. hMSCs possessed equivalent mechanical traits initially in the first week, while cells cultured in rigid matrix displayed significant elevation over elastic (G') and viscous moduli (G") on day 7 (p < 0.01) and 14 (p < 0.01). However, after two weeks, soft niches no longer stiffened hMSCs, whereas the effect by rigid substrates was consistently during the entire differentiation course. Stiffness of matrix impacted the viscoelasticity of hMSCs. Detailed recognition of how microenvironment impacts mechanical properties and differentiation of hMSCs will facilitate the advancement of tissue engineering and regenerative medicine.


Subject(s)
Cell Differentiation , Cell Proliferation , Elastic Modulus/physiology , Extracellular Matrix/physiology , Mesenchymal Stem Cells/physiology , Osteogenesis , Tissue Engineering , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , Viscosity
8.
Cell Death Discov ; 7(1): 35, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33597503

ABSTRACT

During differentiation, skeletal muscle develops mature multinucleated muscle fibers, which could contract to exert force on a substrate. Muscle dysfunction occurs progressively in patients with muscular dystrophy, leading to a loss of the ability to walk and eventually to death. The synthetic glucocorticoid dexamethasone (Dex) has been used therapeutically to treat muscular dystrophy by an inhibition of inflammation, followed by slowing muscle degeneration and stabilizing muscle strength. Here, in mice with muscle injury, we found that Dex significantly promotes muscle regeneration via promoting kinesin-1 motor activity. Nevertheless, how Dex promotes myogenesis through kinesin-1 motors remains unclear. We found that Dex directly increases kinesin-1 motor activity, which is required for the expression of a myogenic marker (muscle myosin heavy chain 1/2), and also for the process of myoblast fusion and the formation of polarized myotubes. Upon differentiation, kinesin-1 mediates the recruitment of integrin ß1 onto microtubules allowing delivery of the protein into focal adhesions. Integrin ß1-mediated focal adhesion signaling then guides myoblast fusion towards a polarized morphology. By imposing geometric constrains via micropatterns, we have proved that cell adhesion is able to rescue the defects caused by kinesin-1 inhibition during the process of myogenesis. These discoveries reveal a mechanism by which Dex is able to promote myogenesis, and lead us towards approaches that are more efficient in improving skeletal muscle regeneration.

9.
ACS Appl Bio Mater ; 3(9): 6419-6429, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-35021773

ABSTRACT

Cancer metastasis involves not only cancer cells but also fibroblasts and the surrounding collagen matrices. Previous studies have reported that in tumor tissues, cancer cells and fibroblasts surrounded by dense collagen are often associated with a high risk of cancer metastasis. However, the mechanism of the interaction between the cancer cells, fibroblasts, and the surrounding collagen matrices in vivo to promote cancer cell invasion in different collagen concentration environments remains unclear. To address this issue, we cocultured head and neck squamous cell carcinoma (OECM-1 cells) and human dermal fibroblasts (HDFs) to form 3D spheroids, embedded in collagen gel with different concentrations to delineate their roles and their interactions in cancer cell invasion. We showed that in single-species spheroids, the OECM-1 cells could not remodel the high-concentration (8 mg/mL) collagen matrices to invade into the surrounding collagen. In contrast, in the coculture spheroids, the HDF cells could remodel the collagen matrices, via MMP-meditated collagen degradation, to increase the invasion capability of OECM-1 cells. In the case of low-concentration (2 mg/mL) collagen matrices, both HDF and OECM-1 cells in the coculture spheroids could independently invade into the surrounding collagen via force remodeling of collagen. Our results revealed that the assistance of HDFs was critical for OECM-1 cell invasion into the surrounding extracellular matrix with high collagen concentration, high storage modulus, and small pore sizes. These insightful results shed light on the possible optimal invasion strategy of cancer tumors in vivo in response to different storage moduli of surrounding collagen matrices.

10.
Sci Rep ; 9(1): 1167, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718740

ABSTRACT

Leaf senescence provides a unique window to explore the age-dependent programmed degradation at organ label in plants. Here, spectral domain optical coherence tomography (SD-OCT) has been used to study in vivo senescing leaf microstructural changes in the deciduous plant Acer serrulatum Hayata. Hayata leaves show autumn phenology and change color from green to yellow and finally red. SD-OCT image analysis shows distinctive features among different layers of the leaves; merging of upper epidermis and palisade layers form thicker layers in red leaves compared to green leaves. Moreover, A-scan analysis showed a significant (p < 0.001) decrease in the attenuation coefficient (for wavelength range: 1100-1550 nm) from green to red leaves. In addition, the B-scan analysis also showed significant changes in 14 texture parameters extracted from second-order spatial gray level dependence matrix (SGLDM). Among these parameters, a set of three features (energy, skewness, and sum variance), capable of quantitatively distinguishing difference in the microstructures of three different colored leaves, has been identified. Furthermore, classification based on k-nearest neighbors algorithm (k-NN) was found to yield 98% sensitivity, 99% specificity, and 95.5% accuracy. Following the proposed technique, a portable noninvasive tool for quality control in crop management can be anticipated.


Subject(s)
Acer/anatomy & histology , Acer/physiology , Image Processing, Computer-Assisted/methods , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Tomography, Optical Coherence/methods , Agriculture/methods
11.
Life Sci Alliance ; 2(1)2019 02.
Article in English | MEDLINE | ID: mdl-30737247

ABSTRACT

Directed cell migration requires centrosome-mediated cell polarization and dynamical control of focal adhesions (FAs). To examine how FAs cooperate with centrosomes for directed cell migration, we used centrosome-deficient cells and found that loss of centrosomes enhanced the formation of acentrosomal microtubules, which failed to form polarized structures in wound-edge cells. In acentrosomal cells, we detected higher levels of Rac1-guanine nucleotide exchange factor TRIO (Triple Functional Domain Protein) on microtubules and FAs. Acentrosomal microtubules deliver TRIO to FAs for Rac1 regulation. Indeed, centrosome disruption induced excessive Rac1 activation around the cell periphery via TRIO, causing rapid FA turnover, a disorganized actin meshwork, randomly protruding lamellipodia, and loss of cell polarity. This study reveals the importance of centrosomes to balance the assembly of centrosomal and acentrosomal microtubules and to deliver microtubule-associated TRIO proteins to FAs at the cell front for proper spatial activation of Rac1, FA turnover, lamillipodial protrusion, and cell polarization, thereby allowing directed cell migration.


Subject(s)
Cell Movement/physiology , Cell Polarity/physiology , Centrosome/metabolism , rac1 GTP-Binding Protein/metabolism , Actins/metabolism , Cell Adhesion/physiology , Cell Line , Focal Adhesions/metabolism , Gene Knockdown Techniques , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pseudopodia/metabolism , Retinal Pigment Epithelium/cytology , Transfection
12.
Acta Biomater ; 84: 280-292, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30500449

ABSTRACT

Mechanical remodeling of stromal collagen, such as reorientation and deformation of collagen matrix, generated by invading cancer cells, plays an important role in the progression of cancer invasion and metastasis. In this study, we applied time-lapse microscopy in conjunction with particle displacement mapping to analyze time-dependent contraction and expansion deformations of collagen surrounding individual spheroids of head and neck squamous cell carcinoma cells (HNSCC), OECM-1 & SAS, as the cancer cells detached from the spheroid and invaded into the surrounding 3D collagen matrix. Our results revealed that highly-invasive HNSCC spheroids, stimulated by epidermal growth factor (EGF), generated a strong contraction deformation of the surrounding collagen in the very early stage, and aligned the collagen fibers radially with respect to the center of the spheroid. This initial collagen contraction deformation generated by the HNSCC spheroid bears a strong positive correlation with the overall extent of subsequent cancer cells invasion; hence, it may serve as an early indicator of the invasion capability of the HNSCC spheroids. STATEMENT OF SIGNIFICANCE: Mechanical remodeling of extracellular matrix (ECM) generated by cancer cells plays an important role in the progression of cancer invasion and metastasis. We observed that the extent of initial contraction deformation of collagen surrounding a head and neck squamous cell carcinoma cell (HNSCC) spheroid played an indispensable role in early stage to promote cancer cells invasion into the surrounding ECM. Our results revealed that more invasive HNSCC spheroids generated a larger extent of initial collagen contraction to align the surrounding collagen and to promote cancer cells invasion. This initial collagen contraction deformation generated by the HNSCC spheroids bears a strong positive correlation with the overall extent of cancer cells invasion; hence, it may serve as an early indicator of the invasion capability of the HNSCC spheroids.


Subject(s)
Head and Neck Neoplasms , Neoplasm Proteins/metabolism , Spheroids, Cellular , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Collagen , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Neoplasm Invasiveness , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
13.
J Cell Mol Med ; 22(8): 3837-3846, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29726584

ABSTRACT

The biological impact and signalling of epithelial-mesenchymal transition (EMT) during cancer metastasis has been established. However, the changes in biophysical properties of cancer cells undergoing EMT remain elusive. Here, we measured, via video particle tracking microrheology, the intracellular stiffness of head and neck cancer cell lines with distinct EMT phenotypes. We also examined cells migration and invasiveness in different extracellular matrix architectures and EMT-related signalling in these cell lines. Our results show that when cells were cultivated in three-dimensional (3D) environments, the differences in cell morphology, migration speed, invasion capability and intracellular stiffness were more pronounced among different head and neck cancer cell lines with distinct EMT phenotypes than those cultivated in traditional plastic dishes and/or seated on top of a thick layer of collagen. An inverse correlation between intracellular stiffness and invasiveness in 3D culture was revealed. Knock-down of the EMT regulator Twist1 or Snail or inhibition of Rac1 which is a downstream GTPase of Twist1 increased intracellular stiffness. These results indicate that the EMT regulators, Twist1 and Snail and the mediated signals play a critical role in reducing intracellular stiffness and enhancing cell migration in EMT to promote cancer cells invasion.

14.
Sci Rep ; 7(1): 16977, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29209088

ABSTRACT

Development and progression of neurodegenerative diseases like Parkinson's disease (PD) involve multiple pathways. Thus, effective therapeutic treatments should intervene to address all these pathways simultaneously for greater success. Most of the current pharmacotherapeutic approaches just supplement striatal dopamine. Hence, natural extracts of plants with therapeutic potential have been explored. Curcuminoids belong to one such group of polyphenol which show immense therapeutic effects. Here, we have used intracellular reactive oxygen species (ROS) measurement, and two-photon fluorescence lifetime imaging microscopy (2P-FLIM) of cellular autofluorescent co-enzyme reduced nicotinamide adenine dinucleotide (NADH) to study the inhibitory effects of curcumin and cyclocurcumin in alleviating PD like neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+) in neuronal growth factor (NGF) induced differentiated PC12 cells. Our results showed that both cyclocurcumin and curcumin reduced the level of ROS caused by MPP+ treatment. Moreover, a significant increase in the free, protein-bound, and average NADH fluorescence lifetimes along with a decrease in the relative contribution of free- vs. protein-bound NADH components in curcuminoids treated cells (pretreated with MPP+) were observed compared with those treated with MPP+ only. This study, which indicates that cyclocurcumin offers higher neuronal protection than curcumin, may initiate further studies of these compounds in the cure of neurodegenerative diseases.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Curcumin/analogs & derivatives , Curcumin/pharmacology , Neuroprotective Agents/pharmacology , Neurotoxicity Syndromes/drug therapy , Animals , Cell Differentiation/drug effects , Cell Survival/drug effects , Microscopy, Fluorescence/methods , NAD/metabolism , Nerve Growth Factor/pharmacology , PC12 Cells , Parkinson Disease/pathology , Rats , Reactive Oxygen Species/metabolism
15.
Oncotarget ; 8(41): 70653-70668, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-29050309

ABSTRACT

Directed cell migration is an important step in effective wound healing and requires the dynamic control of the formation of cell-extracellular matrix interactions. Plasma fibronectin is an extracellular matrix glycoprotein present in blood plasma that plays crucial roles in modulating cellular adhesion and migration and thereby helping to mediate all steps of wound healing. In order to seek safe sources of plasma fibronectin for its practical use in wound dressing, we isolated fibronectin from human (homo) and porcine plasma and demonstrated that both have a similar ability as a suitable substrate for the stimulation of cell adhesion and for directing cell migration. In addition, we also defined the N-glycosylation sites and N-glycans present on homo and porcine plasma fibronectin. These N-glycosylation modifications of the plasma fibronectin synergistically support the integrin-mediated signals to bring about mediating cellular adhesion and directed cell migration. This study not only determines the important function of N-glycans in both homo and porcine plasma fibronectin-mediated cell adhesion and directed cell migration, but also reveals the potential applications of porcine plasma fibronectin if it was applied as a material for clinical wound healing and tissue repair.

16.
Sci Rep ; 7(1): 8710, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821879

ABSTRACT

The RNA-binding protein Musashi-1 (MSI1) exerts essential roles in multiple cellular functions, such as maintenance of self-renewal and pluripotency of stem cells. MSI1 overexpression has been observed in several tumor tissues, including glioblastoma (GBM), and is considered as a well-established marker for tumor metastasis and recurrence. However, the molecular mechanisms by which MSI1 regulates cell migration are still undetermined. Here we reported that MSI1 alters cell morphology, promotes cell migration, and increases viscoelasticity of GBM cells. We also found that MSI1 directly binds to the 3'UTR of Tensin 3 (TNS3) mRNA, a negative regulator of cell migration, to inhibit its translation. Additionally, we identified that RhoA-GTP could be a potential regulator in MSI1/TNS3-mediated cell migration and morphological changes. In a xenograft animal model, high expression ratio of MSI1 to TNS3 enhanced GBM tumor migration. We also confirmed that MSI1 and TNS3 expressions are mutually exclusive in migratory tumor lesions, and GBM patients with MSI1high/TNS3low pattern tend to have poor clinical outcome. Taken together, our findings suggested a critical role of MSI1-TNS3 axis in regulating GBM migration and highlighted that the ratio of MSI1/TNS3 could predict metastatic and survival outcome of GBM patients.


Subject(s)
Cell Movement , Cytoskeleton/metabolism , Glioblastoma/pathology , Nerve Tissue Proteins/metabolism , Protein Biosynthesis , RNA-Binding Proteins/metabolism , Tensins/metabolism , 3' Untranslated Regions/genetics , Animals , Cell Adhesion , Cell Line, Tumor , Disease Progression , Elasticity , Gene Ontology , Guanosine Triphosphate/metabolism , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Protein Binding , Signal Transduction , Viscosity , rhoA GTP-Binding Protein/metabolism
17.
Sci Rep ; 7: 44945, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28322328

ABSTRACT

5D images of engrailed (en) and eye gone (eyg) gene expressions during the course of the eye-antenna disc primordium (EADP) formation of Drosophila embryos from embryonic stages 13 through 16 were recorded via light sheet microscopy and analyzed to reveal the cell dynamics involved in the development of the EADP. Detailed analysis of the time-lapsed images revealed the process of EADP formation and its invagination trajectory, which involved an inversion of the EADP anterior-posterior axis relative to the body. Furthermore, analysis of the en-expression pattern in the EADP provided strong evidence that the EADP is derived from one of the en-expressing head segments.


Subject(s)
Drosophila melanogaster/genetics , Eye/metabolism , Microscopy, Fluorescence/methods , Animals , Biomarkers , Drosophila melanogaster/metabolism , Gene Expression , Gene Expression Regulation, Developmental , Genes, Reporter , Imaging, Three-Dimensional
18.
Sci Rep ; 6: 31547, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27526936

ABSTRACT

Cellular biophysical properties are novel biomarkers of cell phenotypes which may reflect the status of differentiating stem cells. Accurate characterizations of cellular biophysical properties, in conjunction with the corresponding biochemical properties could help to distinguish stem cells from primary cells, cancer cells, and differentiated cells. However, the correlated evolution of these properties in the course of directed stem cells differentiation has not been well characterized. In this study, we applied video particle tracking microrheology (VPTM) to measure intracellular viscoelasticity of differentiating human mesenchymal stromal/stem cells (hMSCs). Our results showed that osteogenesis not only increased both elastic and viscous moduli, but also converted the intracellular viscoelasticity of differentiating hMSCs from viscous-like to elastic-like. In contrast, adipogenesis decreased both elastic and viscous moduli while hMSCs remained viscous-like during the differentiation. In conjunction with bio- chemical and physical parameters, such as gene expression profiles, cell morphology, and cytoskeleton arrangement, we demonstrated that VPTM is a unique approach to quantify, with high data throughput, the maturation level of differentiating hMSCs and to anticipate their fate decisions. This approach is well suited for time-lapsed study of the mechanobiology of differentiating stem cells especially in three dimensional physico-chemical biomimetic environments including porous scaffolds.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells/cytology , Actins/metabolism , Adipogenesis , Focal Adhesions , Gene Expression Profiling , Humans , Mesenchymal Stem Cells/metabolism , Microscopy, Fluorescence , Osteogenesis , Rheology , Viscosity
19.
Sci Rep ; 6: 19145, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758390

ABSTRACT

Intracellular endogenous fluorescent co-enzymes, reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), play a pivotal role in cellular metabolism; quantitative assessment of their presence in living cells can be exploited to monitor cellular energetics in Parkinson's disease (PD), a neurodegenerative disorder. Here, we applied two-photon fluorescence lifetime imaging microscopy (2P-FLIM) to noninvasively measure the fluorescence lifetime components of NADH and FAD, and their relative contributions in MPP(+) (1-methyl-4-phenylpyridinium) treated neuronal cells, derived from PC12 cells treated with nerve growth factor (NGF), to mimic PD conditions. A systematic FLIM data analysis showed a statistically significant (p < 0.001) decrease in the fluorescence lifetime of both free and protein-bound NADH, as well as free and protein-bound FAD in MPP(+) treated cells. On the relative contributions of the free and protein-bound NADH and FAD to the life time, however, both the free NADH contribution and the corresponding protein-bound FAD contribution increase significantly (p < 0.001) in MPP(+) treated cells, compared to control cells. These results, which indicate a shift in energy production in the MPP(+) treated cells from oxidative phosphorylation towards anaerobic glycolysis, can potentially be used as cellular metabolic metrics to assess the condition of PD at the cellular level.


Subject(s)
Energy Metabolism , Metabolomics , Microscopy, Fluorescence , Models, Biological , Animals , Energy Metabolism/drug effects , Flavin-Adenine Dinucleotide/metabolism , Metabolomics/methods , Microscopy, Fluorescence/methods , NAD/metabolism , Nerve Growth Factor/pharmacology , PC12 Cells , Parkinson Disease/metabolism , Rats
20.
Sci Rep ; 6: 20097, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26806007

ABSTRACT

We have developed an automatic and objective method for detecting human oral squamous cell carcinoma (OSCC) tissues with Raman microspectroscopy. We measure 196 independent Raman spectra from 196 different points of one oral tissue sample and globally analyze these spectra using a Multivariate Curve Resolution (MCR) analysis. Discrimination of OSCC tissues is automatically and objectively made by spectral matching comparison of the MCR decomposed Raman spectra and the standard Raman spectrum of keratin, a well-established molecular marker of OSCC. We use a total of 24 tissue samples, 10 OSCC and 10 normal tissues from the same 10 patients, 3 OSCC and 1 normal tissues from different patients. Following the newly developed protocol presented here, we have been able to detect OSCC tissues with 77 to 92% sensitivity (depending on how to define positivity) and 100% specificity. The present approach lends itself to a reliable clinical diagnosis of OSCC substantiated by the "molecular fingerprint" of keratin.


Subject(s)
Biomarkers, Tumor/isolation & purification , Carcinoma, Squamous Cell/diagnosis , Keratins/isolation & purification , Mouth Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Humans , Keratins/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...