Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Microbiol Spectr ; 12(7): e0050924, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38809017

ABSTRACT

Bacterial genotyping through whole-genome sequencing plays a crucial role in disease surveillance and outbreak investigations in public health laboratories. This study assessed the effectiveness of Oxford Nanopore Technologies (ONT) sequencing in the genotyping of Listeria monocytogenes and Salmonella enterica serovar Enteritidis. Our results indicated that ONT sequences, generated with the R10.4.1 flow cell and basecalled using the Dorado 0.5.0 Super Accurate 4.3 model, exhibited comparable accuracy to Illumina sequences, effectively discriminating among bacterial strains from outbreaks. These findings suggest that ONT sequencing has the potential to be a promising tool for rapid whole-genome sequencing of bacterial pathogens in public health laboratories for epidemiological investigations. IMPORTANCE: This study unveils that Oxford Nanopore Technologies sequencing, by itself, holds the potential to serve as a whole-genome sequencing-based genotyping tool in public health laboratories, enabling routine subtyping of bacterial isolates for disease surveillance and outbreak investigations.


Subject(s)
Genome, Bacterial , Listeria monocytogenes , Nanopore Sequencing , Salmonella enteritidis , Whole Genome Sequencing , Listeria monocytogenes/genetics , Listeria monocytogenes/classification , Listeria monocytogenes/isolation & purification , Salmonella enteritidis/genetics , Salmonella enteritidis/classification , Salmonella enteritidis/isolation & purification , Whole Genome Sequencing/methods , Nanopore Sequencing/methods , Genome, Bacterial/genetics , Humans , Listeriosis/microbiology , Genotype , Disease Outbreaks , Genotyping Techniques/methods , Salmonella Infections/microbiology
2.
IJID Reg ; 11: 100372, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38799797

ABSTRACT

Objectives: Salmonella, a zoonotic pathogen, significantly impacts global human health. Understanding its serotype distribution and antimicrobial resistance is crucial for effective control measures and medical interventions. Methods: We collected Salmonella isolates and demographic data from Taiwanese hospitals between 2004 and 2022, analyzing their serotypes and antimicrobial susceptibility. Results: Among 40,595 isolates, salmonellosis predominated in children aged 0-4 (61.2%) years and among males (55.2%). Males also showed higher rates of extraintestinal infections (18.1% vs 16.0%, P <0.001), particularly, in the ≥65 years age group (52.4%). The top five serovars were S. Enteritidis (32.8%), S. Typhimurium (21.7%), S. Newport (6.2%), S. Stanley (4.7%), and S. Anatum (4.0%). Notably, S. Enteritidis prevalence increased from 23.9% (2004-2005) to 43.6% (2021-2022). Antimicrobial resistance was high, with a 51.6% multidrug resistance (MDR) rate. Disturbingly, MDR rates exceeded 90% in serovars Albany, Schwarzengrund, Choleraesuis, and Goldcoast. Resistance to key therapeutic agents, azithromycin, cefotaxime, and ciprofloxacin, exhibited concerning upward trends, and the surge in cefotaxime and ciprofloxacin resistance was closely linked to the emergence and spread of MDR S. Anatum and S. Goldcoast clones. Conclusions: Prioritizing control measures against S. Enteritidis and closely monitoring the prevalence and spread of MDR clones are imperative to mitigate Salmonella infections in Taiwan.

3.
J Glob Antimicrob Resist ; 38: 27-34, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821444

ABSTRACT

OBJECTIVES: Campylobacter is a significant zoonotic pathogen primarily transmitted through poultry. Our study aimed to assess antimicrobial resistance and genetic relationships among Campylobacter isolates from retail chicken meat and humans in Taiwan. METHODS: Campylobacter isolates were analysed using whole-genome sequencing to investigate their antimicrobial resistance, genetic determinants of resistance, and genotypes. RESULTS: Campylobacter coli and Campylobacter jejuni accounted for 44.9% and 55.1% of chicken meat isolates, and 11.4% and 88.6% of human isolates, respectively. C. coli displayed significantly higher resistance levels. Furthermore, isolates from chicken meat exhibited higher levels of resistance to most tested antimicrobials compared to isolates from humans. Multidrug resistance was observed in 96.3% of C. coli and 43.3% of C. jejuni isolates from chicken meat and 80.6% of C. coli and 15.8% of C. jejuni isolates from humans. Macrolide resistance was observed in 85.5% of C. coli isolates, primarily attributed to the erm(B) rather than the A2075G mutation in 23S rRNA. Among the 511 genomes, we identified 133 conventional MLST sequence types, indicating significant diversity among Campylobacter strains. Notably, hierarchical Core-genome multilocus sequence typing clustering, including HC0, HC5, and HC10, revealed a significant proportion of closely related isolates from chicken meat and humans. CONCLUSIONS: Our research highlights significant associations in antimicrobial resistance and genetic relatedness between Campylobacter isolates from chicken meat and humans in Taiwan. The genetic analysis data suggest that campylobacteriosis outbreaks may occur more frequently in Taiwan than previously assumed. Our study emphasizes the need for strategies to control multidrug-resistant strains and enhance outbreak prevention.

4.
Front Microbiol ; 14: 1291540, 2023.
Article in English | MEDLINE | ID: mdl-38143864

ABSTRACT

Carbapenem-resistant ST11_KL64 Klebsiella pneumoniae emerged as a significant public health concern in Taiwan, peaking between 2013 and 2015, with the majority of isolates exhibiting OXA-48 as the sole carbapenemase. In this study, we employed whole-genome sequencing to investigate the molecular underpinnings of ST11_KL64 isolates collected from 2013 to 2021. Phylogenomic analysis revealed a notable genetic divergence between the ST11_KL64 strains in Taiwan and those in China, suggesting an independent evolutionary trajectory. Our findings indicated that the ST11_KL64_Taiwan lineage originated from the ST11_KL64 lineage in Brazil, with recombination events leading to the integration of ICEKp11 and a 27-kb fragment at the tRNAASN sites, shaping its unique genomic landscape. To further elucidate this unique sublineage, we examined the plasmid contents. In contrast to ST11_KL64_Brazil strains, which predominantly carried blaKPC-2, ST11_KL64_Taiwan strains exhibited the acquisition of an epidemic blaOXA-48-carrying IncL plasmid. Additionally, ST11_KL64_Taiwan strains consistently harbored a multi-drug resistance IncC plasmid, along with a collection of gene clusters that conferred resistance to heavy metals and the phage shock protein system via various Inc-type plasmids. Although few, there were still rare ST11_KL64_Taiwan strains that have evolved into hypervirulent CRKP through the horizontal acquisition of pLVPK variants. Comprehensive characterization of the high-risk ST11_KL64 lineage in Taiwan not only sheds light on its epidemic success but also provides essential data for ongoing surveillance efforts aimed at tracking the spread and evolution of ST11_KL64 across different geographical regions. Understanding the molecular underpinnings of CRKP evolution is crucial for developing effective strategies to combat its emergence and dissemination.

5.
Article in English | MEDLINE | ID: mdl-37951802

ABSTRACT

While the incidence of shigellosis has decreased in developed nations due to improved living conditions and healthcare systems, it remains prevalent in economically developing regions. In recent years, a resurgence of shigellosis has been observed in the United States, Europe, and Taiwan, primarily among men having sex with men and people living with human immunodeficiency virus, along with a rise in antimicrobial resistance. This study aims to review the historical epidemiological trends and drug resistance in shigellosis, with a focus on Taiwan. A comprehensive search was conducted using various databases and sources, including non-English literature in Japanese and Chinese. In developed countries, Shigella sonnei and Shigella flexneri are the most common species, while Shigella dysenteriae infections are sporadic. In Taiwan, the classification and prevalence of Shigella species have evolved over time, with S. flexneri and S. sonnei being the predominant strains. Fluoroquinolone resistance and azithromycin non-susceptibility are the ongoing threat. In conclusion, shigellosis remains a significant global health concern, with recent increases in certain populations and antimicrobial resistance. Further research is necessary to understand the clinical significance and risk factors associated with asymptomatic carriers and to assess the impact of behavioral modifications and interventions in high-risk populations.

6.
Commun Biol ; 6(1): 1215, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38030695

ABSTRACT

The accuracy of Oxford Nanopore Technology (ONT) sequencing has significantly improved thanks to new flowcells, sequencing kits, and basecalling algorithms. However, novel modification types untrained in the basecalling models can seriously reduce the quality. Here we reports a set of ONT-sequenced genomes with unexpected low quality due to novel modification types. Demodification by whole-genome amplification significantly improved the quality but lost the epigenome. We also developed a reference-based method, Modpolish, for correcting modification-mediated errors while retaining the epigenome when a sufficient number of closely-related genomes is publicly available (default: top 20 genomes with at least 95% identity). Modpolish not only significantly improved the quality of in-house sequenced genomes but also public datasets sequenced by R9.4 and R10.4 (simplex). Our results suggested that novel modifications are prone to ONT systematic errors. Nevertheless, these errors are correctable by nucleotide demodification or Modpolish without prior knowledge of modifications.


Subject(s)
Nanopore Sequencing , Sequence Analysis, DNA/methods , Nanopore Sequencing/methods , Nucleotides , Algorithms , Genome
7.
Microbiol Spectr ; 11(6): e0292223, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37787563

ABSTRACT

IMPORTANCE: Carbapenem resistance arising from the loss of porins is commonly observed in extended-spectrum ß-lactamase (ESBL) and AmpC ß-lactamase-producing strains of certain Enterobacteriaceae genera, including Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa. However, this resistance mechanism is rarely reported in the Salmonella genus. To address this knowledge gap, our study offers genetic evidence demonstrating that the loss of two specific porins (OmpC_378 and OmpD) is crucial for the development of carbapenem resistance in Salmonella ESBL and AmpC ß-lactamase-producing strains. Furthermore, our findings reveal that most Salmonella serovars carry seven porin parathologs, with OmpC_378 and OmpD being the key porins involved in the development of carbapenem resistance in Salmonella strains.


Subject(s)
Anti-Bacterial Agents , Salmonella enterica , Anti-Bacterial Agents/pharmacology , Serogroup , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Salmonella , Escherichia coli/genetics , Carbapenems/pharmacology , Salmonella enterica/genetics , Salmonella enterica/metabolism , Porins/genetics , Microbial Sensitivity Tests
8.
J Glob Antimicrob Resist ; 35: 128-136, 2023 12.
Article in English | MEDLINE | ID: mdl-37709137

ABSTRACT

OBJECTIVES: We investigated the temporal trends of Salmonella enterica serovar Typhimurium (S. Typhimurium) clones in Taiwan from 2004 to 2019, focusing on antimicrobial resistance (AMR), resistance genetic determinants, and plasmid types. METHODS: Salmonella isolates were characterized using pulsed-field gel electrophoresis (PFGE), whole-genome sequencing, and antimicrobial susceptibility testing. Clones were defined using PFGE clustering and the hierarchical cgMLST clustering (HierCC) assignments. RESULTS: Seven major S. Typhimurium clones, HC100_2, 13, 41, 305, 310, 501, and 46261, accounted for 97.6% (8079/8275) of human isolates in Taiwan. Each clone displayed a unique AMR profile, resistance genetic determinants, and plasmid types. Four highly resistant clones (HC100_2, 41, 305, and 310) exhibited multiple resistance in 86.5% to 96.1% of isolates. HC100_305 and HC100_2 were pandemic multidrug-resistant clones, characterized by resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT) and ASSuT, respectively. The prevalence of the ACSSuT clone decreased from 68.7% of S. Typhimurium isolates in 2004 to 1.7% in 2019, while the ASSuT clone emerged in 2007 and became the largest clone after 2010. Several plasmids, including IncHI2-IncHI2A, IncC, IncFIB(K), and IncI1-1(α), carried multiple resistance genes or were associated with the carriage of mph(A), blaCMY-2, and blaDHA-1. CONCLUSIONS: Between 2004 and 2019, Taiwan experienced the emergence, prevalence, and subsequent decline of several highly resistant S. Typhimurium clones. The clones defined using the HierCC approach have global comparability. The increasing resistance to third-generation cephalosporins, cephamycins, ciprofloxacin, and azithromycin in recent years poses a significant medical concern.


Subject(s)
Anti-Bacterial Agents , Salmonella typhimurium , Humans , Anti-Bacterial Agents/pharmacology , Serogroup , Taiwan/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Drug Resistance, Bacterial
9.
Emerg Infect Dis ; 29(8): 1634-1637, 2023 08.
Article in English | MEDLINE | ID: mdl-37486207

ABSTRACT

A CTX-M-65‒producing Salmonella enterica serovar Infantis clone, probably originating in Latin America and initially reported in the United States, has emerged in Taiwan. Chicken meat is the most likely primary carrier. Four of the 9 drug resistance genes have integrated into the chromosome: blaCTX-M-65, tet(A), sul1, and aadA1.


Subject(s)
Salmonella enterica , beta-Lactamases , United States , Animals , Serogroup , Taiwan/epidemiology , beta-Lactamases/genetics , Salmonella enterica/genetics , Chromosomes , Anti-Bacterial Agents/pharmacology , Chickens , Plasmids , Drug Resistance, Multiple, Bacterial/genetics
10.
Microbiol Spectr ; 11(1): e0336422, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36688703

ABSTRACT

Antimicrobial resistance was investigated in 2,341 nontyphoidal Salmonella (NTS) isolates recovered from humans in Taiwan from 2017 to 2018 using antimicrobial susceptibility testing. Azithromycin resistance determinants were detected in 175 selected isolates using PCR and confirmed in 81 selected isolates using whole-genome sequencing. Multidrug resistance was found in 47.3% of total isolates and 96.2% of Salmonella enterica serovar Anatum and 81.7% of S. enterica serovar Typhimurium isolates. Resistance to the conventional first-line drugs (ampicillin, chloramphenicol, and cotrimoxazole), cefotaxime and ceftazidime, and ciprofloxacin was found in 32.5 to 49.0%, 20.3 to 20.4%, and 3.2% of isolates, respectively. A total of 76 (3.1%) isolates were resistant to azithromycin, which was associated with mph(A), erm(42), erm(B), and possibly the enhanced expression of efflux pump(s) due to ramAp or defective ramR. mph(A) was found in 53% of the 76 azithromycin-resistant isolates from 11 serovars and located in an IS26-mph(A)-mrx(A)-mphR(A)-IS6100 unit in various incompatibility plasmids and the chromosomes. erm(42) in S. enterica serovar Albany was carried by an integrative and conjugative element, ICE_erm42, and in S. enterica serovar Enteritidis and S. Typhimurium was located in IS26 composite transposons in the chromosomes. erm(B) was carried by IncI1-I(α) plasmids in S. Enteritidis and S. Typhimurium. ramAp was a plasmid-borne ramA, a regulatory activator of efflux pump(s), found in only S. enterica serovar Goldcoast. Since the azithromycin resistance determinants are primarily carried on mobile genetic elements, they could easily be disseminated among human bacterial pathogens. The ramAp-carrying S. Goldcoast isolates displayed azithromycin MICs of 16 to 32 mg/L. Thus, the epidemiological cutoff value of ≤16 mg/L of azithromycin proposed for wild-type NTS should be reconsidered. IMPORTANCE Antimicrobial resistance in NTS isolates is a major public health concern in Taiwan, and the mechanisms of azithromycin resistance are rarely investigated. Azithromycin and carbapenems are the last resort for the treatment of invasive salmonellosis caused by multidrug-resistant (MDR) and extensively drug-resistant Salmonella strains. Our study reports the epidemiological trend of resistance in NTS in Taiwan and the genetic determinants involved in azithromycin resistance. We point out that nearly half of NTS isolates from 2017 to 2018 are MDR, and 20% are resistant to third-generation cephalosporins. The azithromycin resistance rate (3.1%) for the NTS isolates from Taiwan is much higher than those for the NTS isolates from the United States and Europe. Our study also indicates that azithromycin resistance is primarily mediated by mph(A), erm(42), erm(B), and ramAp, which are frequently carried on mobile genetic elements. Thus, the azithromycin resistance determinants could be expected to be disseminated among diverse bacterial pathogens.


Subject(s)
Azithromycin , Salmonella enterica , Humans , Azithromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Taiwan , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Salmonella/genetics , Microbial Sensitivity Tests , Salmonella enterica/genetics
11.
Article in English | MEDLINE | ID: mdl-33685895

ABSTRACT

We identified an erm42-carrying integrative and conjugative element, ICE_erm42, in 26.4% of multidrug-resistant Salmonella enterica serovar Albany isolates recovered from human salmonellosis between 2014 and 2019 in Taiwan. ICE_erm42-carrying strains displayed high-level resistance to azithromycin and the element could move into the phylogenetically distant Vibrio cholerae via conjugation.

12.
Microbiol Spectr ; 10(6): e0182522, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36222695

ABSTRACT

Listeria monocytogenes is a life-threatening foodborne pathogen. Here, we report the genomic characterization of a nationwide dataset of 411 clinical and 82 food isolates collected in Taiwan between 2014 and 2019. The observed incidence of listeriosis increased from 0.83 to 7 cases per million population upon implementation of mandatory notification in 2018. Pregnancy-associated cases accounted for 2.8% of human listeriosis and all-cause 7-day mortality was of 11.9% in nonmaternal-neonatal listeriosis. L. monocytogenes was isolated from 90% of raw pork and 34% of chicken products collected in supermarkets. Sublineages SL87, SL5, and SL378 accounted for the majority (65%) of clinical cases. SL87 and SL378 were also predominant (57%) in food products. Five cgMLST clusters accounted for 57% clinical cases, suggesting unnoticed outbreaks spanning up to 6 years. Mandatory notification allowed identifying the magnitude of listeriosis in Taiwan. Continuous real-time genomic surveillance will allow reducing contaminating sources and disease burden. IMPORTANCE Understanding the phylogenetic relationship between clinical and food isolates is important to identify the transmission routes of foodborne diseases. Here, we performed a nationwide study between 2014 and 2019 of both clinical and food Listeria monocytogenes isolates and sequenced their genomes. We show a 9-fold increase in listeriosis reporting upon implementation of mandatory notification. We found that sublineages SL87 and SL378 predominated among both clinical (50%) and food (57%) isolates, and identified five cgMLST clusters accounting for 57% of clinical cases, suggestive of potential protracted sources of contamination over up to 6 years in Taiwan. These findings highlight that mandatory declaration is critical in identifying the burden of listeriosis, and the importance of genome sequencing for a detailed characterization of the pathogenic L. monocytogenes genotypes circulating in Asia.


Subject(s)
Listeria monocytogenes , Listeriosis , Infant, Newborn , Humans , Listeria monocytogenes/genetics , Taiwan/epidemiology , Phylogeny , Food Microbiology , Genome, Bacterial , Multilocus Sequence Typing , Whole Genome Sequencing , Listeriosis/epidemiology , Genomics , Disease Outbreaks
13.
Microbiol Spectr ; 10(5): e0207722, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36129301

ABSTRACT

CG23-I lineage constitutes the majority of hypervirulent Klebsiella pneumoniae. A diabetic patient suffered six episodes of infections caused by CG23-I K. pneumoniae. A total of nine isolates were collected in 2020. We performed whole-genome sequencing to elucidate the within-patient evolution of CG23-I K. pneumoniae. The maximum pairwise difference among the nine longitudinally collected isolates was five single nucleotide polymorphisms. One of the mutations was at the Asp87 position of GyrA. Four indels were identified, including an initiator tRNAfMet duplication, a tRNAArg deletion, a 7-bp insertion, and a 22-bp deletion. All 9 isolates had the genomic features of CG23-I K. pneumoniae, a chromosome-borne ICEKp10, and a large virulence plasmid. The carriage of a complete set of genes for the biosynthesis of colibactin by ICEKp10 gave the nine isolates an ability to cause DNA damage to RAW264.7 cells. Compared with the initial isolate, the last isolate with an additional copy of initiator tRNAfMet grew faster in a nutrient-limiting condition and exhibited enhanced virulence in BALB/c mice. Collectively, we characterized the within-patient microevolution of CG23-I K. pneumoniae through an in-depth comparison of genome sequences. Using the in vitro experiments and mouse models, we also demonstrated that these genomic alterations endowed the isolates with advantages to pass through in vivo selection. IMPORTANCE CG23-I is a significant lineage of hypervirulent Klebsiella pneumoniae. This study characterizes the within-patient microevolution of CG23-I K. pneumoniae. Selective pressures from continuous use of antibiotics favored point mutations contributing to bacterial resistance to antibiotics. The duplication of an initiator tRNAfMet gene helped CG23-I K. pneumoniae proliferate to reach a maximal population size during infections. For longer persistence inside a human host, the large virulence plasmid evolved with more flexible control of replication through duplication of the iteron-1 region. With the genomic alterations, the last isolate had a growth advantage over the initial isolate and exhibited enhanced virulence in BALB/c mice. This study gives us a deeper understanding of the genome evolution during the within-patient pathoadaptation of CG23-I K. pneumoniae.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Mice , Animals , Humans , Klebsiella pneumoniae/genetics , Klebsiella Infections/epidemiology , Klebsiella Infections/genetics , Klebsiella Infections/microbiology , RNA, Transfer, Met , Reinfection , RNA, Transfer, Arg , Genome, Bacterial/genetics , Plasmids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
14.
Microbiol Spectr ; 10(4): e0088222, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35862973

ABSTRACT

We present the demographic features of invasive meningococcal disease (IMD) in Taiwan between 1993 and 2020 and the genetic characteristics of Neisseria meningitidis isolates recovered from 2003 to 2020. IMD was rare in Taiwan between 1993 and 2020, with an annual incidence ranging from 0.009 to 0.204 per 100,000 people. The case fatality rate (CFR) declined from 18.1% for patients in 1993 to 2002 to 9.8% in 2003 to 2020. Infants less than 12 months were most susceptible to the disease. N. meningitidis serogroup B (NmB) was most predominant, responsible for 81.2% (134/165) of the IMD cases in 2003 to 2020. The majority of the isolates recovered from 2003 to 2020 belonged to 4 worldwide-spread hyperinvasive clonal complexes (cc), cc4821 (30.3%), cc32 (19.4%), cc41/44 (12.7%), cc23 (7.3%), and also a newly assigned clonal complex, cc3439 (10.3%). Core genome multilocus sequence typing (cgMLST) profile comparisons revealed that the cc4821 isolates with a T-to-I substitution at position 91 in gyrA were closely related to those originating from China. Of the 165 isolates, 20.0% and 53.3% were predicted to be covered by the Bexsero and Trumenba vaccines, respectively, whereas, 77.0% and 46.7% remained indeterminate. In conclusion, N. meningitidis isolates recovered in Taiwan between 2003 and 2020 were mostly highly diverse. Most IMD cases appeared sporadically and were caused by localized strains, although some patients were infected by recently introduced strains. cgMLST is a powerful tool for the rapid comparison of genetic relatedness among a large number of isolates. cgMLST profiling, based on 1,241 core genes, and strain tracking can be performed on the website of cgMLST@Taiwan (http://rdvd.cdc.gov.tw/cgMLST/). IMPORTANCE N. meningitidis can cause life-threatening invasive meningococcal disease (IMD), including meningitis and sepsis, resulting in a high CFR and long-term sequelae in survivors. Here, we report the demographic features of IMD in Taiwan over a 28-year period (1993 to 2020) and the genetic characteristics of N. meningitidis isolates recovered from patients with IMD over an 18-year period (2003 to 2020). We conducted a whole-genome sequence analysis to characterize the genetic features of the isolates and developed a cgMLST scheme for epidemiological investigation and strain tracking. The findings can be beneficial in understanding the epidemiology of IMD in Taiwan, the genetic characteristics of the bacterial strains, and the distribution of vaccine antigens for vaccine development and implementation.


Subject(s)
Meningococcal Infections , Neisseria meningitidis , Humans , Incidence , Infant , Meningococcal Infections/epidemiology , Meningococcal Infections/microbiology , Meningococcal Infections/prevention & control , Multilocus Sequence Typing , Neisseria meningitidis/genetics , Serogroup , Taiwan/epidemiology
15.
J Glob Antimicrob Resist ; 29: 331-338, 2022 06.
Article in English | MEDLINE | ID: mdl-35413451

ABSTRACT

OBJECTIVES: A nosocomial salmonellosis outbreak caused by Salmonella enterica serovar Goldcoast occurred in a respiratory care ward (RCW) of a hospital in central Taiwan between December 24, 2020, and January 21, 2021. Ten isolates recovered from 10 RCW residents were resistant to extended-spectrum cephalosporins. The resistance mechanism needs to be investigated. METHODS: Whole-genome sequencing and antimicrobial susceptibility testing were conducted to determine the genetic resistance determinants and the phenotypic resistance in the isolates. RESULTS: Each of the 10 outbreak isolates harbored an IncHI2 plasmid that carried 15 antimicrobial resistance genes aac(3)-IId, aadA22, aph(3')-Ia, aph(6)-Id, arr-2, blaCTX-M-55, blaLAP-2, blaTEM-1, dfrA14, floR, lnu(F), qnrS13, sul2, sul3, tet(A), an efflux pump regulatory gene ramAp and an IncL plasmid carried a blaOXA-48. The outbreak strains were expected to be resistant to numerous antimicrobials, including aminoglycosides, b-lactams /inhibitors, tetracycline, rifamycin, lincosamide, sulfonamides, trimethoprim, phenicols, fluoroquinolones, and carbapenems. Two outbreak isolates displayed higher minimum inhibitory concentrations than the other eight isolates to cefmetazole and carbapenems, which was linked to a deficiency of a major facilitator superfamily transporter in the two isolates. CONCLUSION: The carbapenem-resistant outbreak strains could have been derived from extensively drug-resistant S. enterica Goldcoast strains, which have been a major pathogen in Taiwan since 2018, through the acquisition of a blaOXA-48-carrying plasmid. Special efforts are needed in Taiwan to monitor the spread of extremely resistant strains.


Subject(s)
Cross Infection , Salmonella Infections , Salmonella enterica , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Cross Infection/epidemiology , Disease Outbreaks , Drug Resistance, Multiple, Bacterial/genetics , Hospitals , Humans , Salmonella , Salmonella Infections/epidemiology , Serogroup , Taiwan/epidemiology
16.
Emerg Microbes Infect ; 11(1): 498-506, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35045788

ABSTRACT

Shigellosis appears to increase in certain at-risk populations in developed countries. Based on the nationwide surveillance, the annual incidence of shigellosis in Taiwan (1999-2019) was 0.38-5.77 cases per 100,000 people. Indigenous shigellosis has mostly affected men who have sex with men (MSM) and people living with HIV (PLWH) since 2015. In this retrospective study, compared with those diagnosed before 2015, indigenous cases diagnosed during 2015-2019 mostly occurred in male adults (96.0% vs 47.1%, P < 0.001), with a longer hospital stay (median 5.0 vs 3.5 days, P = 0.029) and different coinfections. The predominant strains in 2015 and 2016 were ciprofloxacin-resistant Shigella sonnei and azithromycin non-susceptible Shigella flexneri (S. flexneri) 3a, which had been replaced by ciprofloxacin-resistant S. flexneri 2a since 2018. Notably, six indigenous cases were caused by cefotaxime-resistant S. flexneri. Inappropriate use of empiric antibiotic treatment was common. In conclusion, there is an ongoing spread of ciprofloxacin-resistant shigellosis among PLWH and MSM and cefotaxime-resistant S. flexneri is an emerging threat in Taiwan.


Subject(s)
Dysentery, Bacillary , HIV Infections , Sexual and Gender Minorities , Adult , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Dysentery, Bacillary/drug therapy , Dysentery, Bacillary/epidemiology , HIV Infections/drug therapy , HIV Infections/epidemiology , Homosexuality, Male , Humans , Male , Retrospective Studies , Taiwan/epidemiology
17.
J Microbiol Immunol Infect ; 55(4): 686-694, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34963576

ABSTRACT

BACKGROUND: Escherichia coli is the most common cause of urinary tract infections (UTIs). It is widely accepted that uropathogenic E. coli (UPEC) mainly emerge from the distal gut microbiota. Identification of bacterial characteristics that are able to differentiate UPEC from fecal commensal strains will facilitate the development of novel strategies to detect and monitor the spread of UPEC. METHODS: Fifty fecal commensal, 83 UTI-associated and 40 biliary tract infection (BTI)-associated E. coli isolates were analyzed. The NotI restriction patterns of chromosomal DNA in the isolates were determined by pulse-field gel electrophoresis. The phylogenetic types and the presence of 9 known virulence genes of each isolate were determined by PCR analyses. Additionally, the susceptibilities of the isolates to antibiotics were revealed. Then the associations of NotI resistance with UTI-associated isolates, phylotypes, and antibiotic resistance were assessed. RESULTS: NotI resistance was correlated with UTI-associated isolates, compared to the fecal isolates. Consistently, NotI-resistant isolates harbored a greater number of virulence factors and mainly belonged to phylotype B2. Additionally NotI resistance was correlated with chloramphenicol resistance among the bacteria. Among the fecal, UTI-associated and BTI-associated groups, the distribution of NotI-resistant group B2 isolates was correlated with UTI-associated bacteria. CONCLUSION: NotI resistance alone is a potential marker for distinguishing fecal strains and UPEC, while the combination of NotI resistance and B2 phylogeny is a candidate marker to differentiate UPEC from fecal and other extraintestinal pathogenic E. coli. Additionally, NotI resistance may be valuable for assessing the potential of chloramphenicol resistance of E. coli.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Anti-Bacterial Agents , Humans , Phylogeny , Virulence Factors
18.
J Microbiol Immunol Infect ; 55(1): 102-106, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33485793

ABSTRACT

BACKGROUND: Cholera, a rapidly dehydrating diarrheal disease caused by toxigenic Vibrio cholerae, is a leading cause of morbidity and mortality in some regions of the world. Core genome multilocus sequence typing (cgMLST) is a promising approach in generating genetic fingerprints from whole-genome sequencing (WGS) data for strain comparison among laboratories. METHODS: We constructed a V. cholerae core gene allele database using an in-house developed computational pipeline, a database with cgMLST profiles converted from genomic sequences from the National Center for Biotechnology Information, and built a REST-based web accessible via the Internet. RESULTS: We built a web service platform-cgMLST@Taiwan and installed a V. cholerae allele database, a cgMLST profile database, and computational tools for generating V. cholerae cgMLST profiles (based on 3,017 core genes), performing rapid global strain tracking, and clustering analysis of cgMLST profiles. This web-based platform provides services to researchers, public health microbiologists, and physicians who use WGS data for the investigation of cholera outbreaks and tracking of V. cholerae strain transmission across countries and geographic regions. The cgMLST@Taiwan is accessible at http://rdvd.cdc.gov.tw/cgMLST.


Subject(s)
Cholera , Databases, Genetic , Vibrio cholerae , Cholera/epidemiology , Genome, Bacterial/genetics , Humans , Internet , Multilocus Sequence Typing , Phylogeny , Taiwan , Vibrio cholerae/genetics , Whole Genome Sequencing
19.
Antimicrob Agents Chemother ; 66(1): e0115221, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34694885

ABSTRACT

In investigating the epidemiological trends of Salmonella enterica serovar Goldcoast, we previously identified several closely related strains with different MICs to azithromycin and quinolones. Genome sequencing and comparison of two very similar multidrug-resistant (MDR) strains, R18.0877 and R18.1656, has led to the identification of an extra plasmid-borne ramA gene, ramAp, on the large IncHI2 plasmid carried by R18.0877. The ramAp gene is located in a 953-bp region on the plasmid, which is identical to that of the Klebsiella quasipneumoniae chromosomal ramA loci. A truncated ISEcp1 located at the adjacent upstream area of the putative regulatory region of ramAp may likely contribute to its mobilization and expression. Introducing the ramAp gene and the truncated ISEcp1 into Escherichia coli has resulted in elevated expression of efflux pump genes and elevated MICs to chloramphenicol, azithromycin, nalidixic acid, ciprofloxacin, sulfamethoxazole, trimethoprim, tetracycline, and tigecycline. The ramAp is an extra efflux pump activator gene that potentially could be transmitted with the IncHI2 plasmid among bacteria. It is plausible that, with high interspecific conservation, the plasmid-encoded regulator reduces drug susceptibility by activating existing efflux pump systems of the host and thus can be regarded as a new type of auxiliary antimicrobial resistance determinant. Sequences of similar plasmids were found worldwide. Its impact on the emergence of antimicrobial resistance among bacterial pathogens is worrisome.


Subject(s)
Drug Resistance, Multiple, Bacterial , Salmonella typhimurium , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Plasmids/genetics , Salmonella typhimurium/genetics , Tigecycline
20.
Antimicrob Agents Chemother ; 66(1): e0173621, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34748382

ABSTRACT

Campylobacter coli and Campylobacter Jejuni are highly resistant to most therapeutic antimicrobials in Taiwan; rapid diagnostics of resistance in bacterial isolates is crucial for the treatment of campylobacteriosis. We characterized 219 (40 C. coli and 179 C. jejuni) isolates recovered from humans from 2016 to 2019 using whole-genome sequencing to investigate the genetic diversity among isolates and the genetic resistance determinants associated with antimicrobial resistance. Susceptibility testing with 8 antimicrobials was conducted to assess the concordance between phenotypic resistance and genetic determinants. The conventional and core genome multilocus sequence typing analysis revealed diverse clonality among the isolates. Mutations in gyrA (T86I, D90N), rpsL (K43R, K88R), and 23S rRNA (A2075G) were found in 91.8%, 3.2%, and 6.4% of the isolates, respectively. The horizontally transferable resistance genes ant(6)-I, aad9, aph(3')-IIIa, aph(2″), blaOXA, catA/fexA, cfr(C), erm(B), lnu, sat4, and tet were identified in 24.2%, 21.5%, 33.3%, 11.9%, 96.3%, 10.0%, 0.9%, 6.8%, 3.2%, 13.2%, and 96.3%, respectively. High-level resistance to 8 antimicrobials in isolates was 100% predictable by the known resistance determinants, whereas low-level resistance to azithromycin, clindamycin, nalidixic acid, ciprofloxacin, and florfenicol in isolates was associated with sequence variations in CmeA and CmeB of the CmeABC efflux pump. Resistance-enhancing CmeB variants were identified in 62.1% (136/219) of isolates. In conclusion, an extremely high proportion of C. coli (100%) and C. jejuni (88.3%) were multidrug-resistant, and a high proportion (62.5%) of C. coli isolates were resistant to azithromycin, erythromycin, and clindamycin, which would complicate the treatment of invasive campylobacteriosis in this country.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Campylobacter Infections/drug therapy , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Drug Resistance, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Taiwan/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...