Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 487: 116949, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688425

ABSTRACT

Pulmonary fibrosis is a lung disorder characterized by the accumulation of abnormal extracellular matrix, scar tissue formation, and tissue stiffness. Type II alveolar epithelial cells (AEII) play a critical role in repairing lung tissue after injury, and repeated injury to these cells is a key factor in the development of pulmonary fibrosis. Chronic exposure to PM2.5, a type of air pollution, has been shown to increase the incidence and severity of pulmonary fibrosis by enhancing the activation of EMT in lung epithelial cells. Melatonin, a hormone with antioxidant properties, has been shown to prevent EMT and reduce fibrosis in previous studies. However, the mechanism through which melatonin targets EMT to prevent pulmonary fibrosis caused by PM2.5 exposure has not been extensively discussed before. In this current study, we found that melatonin effectively prevented pulmonary fibrosis caused by prolonged exposure to PM2.5 by targeting EMT. The study demonstrated changes in cellular morphology and expression of EMT markers. Furthermore, the cell migratory potential induced by prolonged exposure to PM2.5 was greatly reduced by melatonin treatment. Finally, in vivo animal studies showed reduced EMT markers and improved pulmonary function. These findings suggest that melatonin has potential clinical use for the prevention of pulmonary fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition , Melatonin , Particulate Matter , Pulmonary Fibrosis , Melatonin/pharmacology , Melatonin/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Animals , Pulmonary Fibrosis/prevention & control , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Particulate Matter/toxicity , Male , Mice , Mice, Inbred C57BL , Cell Movement/drug effects , Humans , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/metabolism , Lung/drug effects , Lung/pathology , Lung/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use
2.
J Cell Mol Med ; 28(8): e18299, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613355

ABSTRACT

Pulmonary fibrosis is a lung disorder affecting the lungs that involves the overexpressed extracellular matrix, scarring and stiffening of tissue. The repair of lung tissue after injury relies heavily on Type II alveolar epithelial cells (AEII), and repeated damage to these cells is a crucial factor in the development of pulmonary fibrosis. Studies have demonstrated that chronic exposure to PM2.5, a form of air pollution, leads to an increase in the incidence and severity of pulmonary fibrosis by stimulation of epithelial-mesenchymal transition (EMT) in lung epithelial cells. Pyrroloquinoline quinone (PQQ) is a bioactive compound found naturally that exhibits potent anti-inflammatory and anti-oxidative properties. The mechanism by which PQQ prevents pulmonary fibrosis caused by exposure to PM2.5 through EMT has not been thoroughly discussed until now. In the current study, we discovered that PQQ successfully prevented PM2.5-induced pulmonary fibrosis by targeting EMT. The results indicated that PQQ was able to inhibit the expression of type I collagen, a well-known fibrosis marker, in AEII cells subjected to long-term PM2.5 exposure. We also found the alterations of cellular structure and EMT marker expression in AEII cells with PM2.5 incubation, which were reduced by PQQ treatment. Furthermore, prolonged exposure to PM2.5 considerably reduced cell migratory ability, but PQQ treatment helped in reducing it. In vivo animal experiments indicated that PQQ could reduce EMT markers and enhance pulmonary function. Overall, these results imply that PQQ might be useful in clinical settings to prevent pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , PQQ Cofactor/pharmacology , Epithelial-Mesenchymal Transition , Alveolar Epithelial Cells , Particulate Matter/toxicity
3.
Clin Sci (Lond) ; 133(5): 709-722, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30808718

ABSTRACT

The epithelial-mesenchymal transition (EMT) phenotype, whereby mature epithelial cells undergo phenotype transition and differentiate into motile, invasive cells, has been indicated in tumor metastasis. The melatonin hormone secreted by the pineal gland has an antioxidant effect and protects cells against carcinogenic substances that reduce tumor progression. However, the effects of melatonin in EMT and lung cancer metastasis are largely unknown. We found that melatonin down-regulated EMT by inhibiting Twist/Twist1 (twist family bHLH transcription factor 1) expression. This effect was mediated by MT1 receptor, PLC, p38/ERK and ß-catenin signaling cascades. Twist expression was positively correlated with tumor stage and negatively correlated with MT1 expression in lung cancer specimens. Furthermore, melatonin inhibited EMT marker expression and lung cancer metastasis to liver in vivo Finally, melatonin shows promise in the treatment of lung cancer metastasis and deserves further study.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Movement/drug effects , Epithelial-Mesenchymal Transition/drug effects , Liver Neoplasms/prevention & control , Lung Neoplasms/drug therapy , Melatonin/pharmacology , Nuclear Proteins/metabolism , Twist-Related Protein 1/metabolism , A549 Cells , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice, SCID , Neoplasm Invasiveness , Nuclear Proteins/genetics , Phosphorylation , Receptor, Melatonin, MT1/agonists , Receptor, Melatonin, MT1/metabolism , Signal Transduction , Twist-Related Protein 1/genetics , Type C Phospholipases/metabolism , Xenograft Model Antitumor Assays , beta Catenin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Environ Toxicol ; 34(2): 203-209, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30421542

ABSTRACT

Lung cancer is one of the most common cancer in cancer-related deaths worldwide, which is characterized by its strong metastatic potential. The melatonin hormone secreted by the pineal grand has an antioxidant effect and protects cells against carcinogenic substances. However, the effects of melatonin in lung cancer stemness are largely unknown. We found that melatonin reduces CD133 expression by ~50% in lung cancer cell lines, while results of a sphere formation assay showed that melatonin inhibits lung cancer stemness. These effects of melatonin were reversed when the cell lines were incubated with phospholipase C (PLC), ERK/p38, and a ß-catenin activator. Transfection with Twist siRNA augmented the inhibitory effects of melatonin, indicating that melatonin suppresses lung cancer stemness by inhibiting the PLC, ERK/p38, ß-catenin, and Twist signaling pathways. We also found CD133 expression is positively correlated with Twist expression in lung cancer specimens. Melatonin shows promise in the treatment of lung cancer stemness and deserves further study.


Subject(s)
Lung Neoplasms/pathology , Melatonin/pharmacology , Neoplastic Stem Cells/drug effects , Signal Transduction/drug effects , A549 Cells , AC133 Antigen/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Humans , MAP Kinase Signaling System/drug effects , Neoplastic Stem Cells/metabolism , Twist Transcription Factors/antagonists & inhibitors , Type C Phospholipases/antagonists & inhibitors , beta Catenin/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...