Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters











Publication year range
1.
Curr Opin Struct Biol ; 11(6): 694-700, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11751050

ABSTRACT

A novel ligand-binding domain, named the 'ACT domain', was recently identified by a PSI-BLAST search. The archetypical ACT domain is the C-terminal regulatory domain of 3-phosphoglycerate dehydrogenase (3PGDH), which folds with a ferredoxin-like betaalphabetabetaalphabeta topology. A pair of ACT domains form an eight-stranded antiparallel sheet with two molecules of the allosteric inhibitor serine bound in the interface. The ACT domain is found in a variety of contexts and is proposed to be a conserved regulatory ligand binding fold. Rat phenylalanine hydroxylase has a regulatory domain with a similar fold, but different ligand-binding mode. Putative ACT domains in some proteins of unknown structure (e.g. acetohydroxyacid synthase regulatory subunits) may also fold like the 3PGDH regulatory domain. The regulatory domain of threonine deaminase, although not a member of the ACT sequence family, is similar in structure to the paired 3PGDH regulatory domains. Repeats of ACT-like domains can create nonequivalent ligand-binding sites with the potential for complex regulatory patterns. The structures and mechanisms of such systems have only begun to be examined.


Subject(s)
Protein Structure, Tertiary , Amino Acid Sequence , Carrier Proteins , Escherichia coli , Ligands , Molecular Sequence Data , Threonine Dehydratase/chemistry , Threonine Dehydratase/metabolism
2.
Biochemistry ; 40(39): 11946-54, 2001 Oct 02.
Article in English | MEDLINE | ID: mdl-11570896

ABSTRACT

Acetohydroxyacid synthases (AHASs) are biosynthetic thiamin diphosphate- (ThDP) and FAD-dependent enzymes. They are homologous to pyruvate oxidase and other members of a family of ThDP-dependent enzymes which catalyze reactions in which the first step is decarboxylation of a 2-ketoacid. AHAS catalyzes the condensation of the 2-carbon moiety, derived from the decarboxylation of pyruvate, with a second 2-ketoacid, to form acetolactate or acetohydroxybutyrate. A structural model for AHAS isozyme II (AHAS II) from Escherichia coli has been constructed on the basis of its homology with pyruvate oxidase from Lactobacillus plantarum (LpPOX). We describe here experiments which further test the model, and test whether the binding and activation of ThDP in AHAS involve the same structural elements and mechanism identified for homologous enzymes. Interaction of a conserved glutamate with the N1' of the ThDP aminopyrimidine moiety is involved in activation of the cofactor for proton exchange in several ThDP-dependent enzymes. In accord with this, the analogue N3'-pyridyl thiamin diphosphate does not support AHAS activity. Mutagenesis of Glu47, the putative conserved glutamate, decreases the rate of proton exchange at C-2 of bound ThDP by nearly 2 orders of magnitude and decreases the turnover rate for the mutants by about 10-fold. Mutant E47A also has altered substrate specificity, pH dependence, and other changes in properties. Mutagenesis of Asp428, presumed on the basis of the model to be the crucial carboxylate ligand to Mg(2+) in the "ThDP motif", leads to a decrease in the affinity of AHAS II for Mg(2+). While mutant D428N shows ThDP affinity close to that of the wild-type on saturation with Mg(2+), D428E has a decreased affinity for ThDP. These mutations also lead to dependence of the enzyme on K(+). These experiments demonstrate that AHAS binds and activates ThDP in the same way as do pyruvate decarboxylase, transketolase, and other ThDP-dependent enzymes. The biosynthetic activity of AHAS also involves many other factors beyond the binding and deprotonation of ThDP; changes in the ligands to ThDP can have interesting and unexpected effects on the reaction.


Subject(s)
Acetolactate Synthase/metabolism , Thiamine Pyrophosphate/metabolism , Acetolactate Synthase/genetics , Base Sequence , Binding Sites , DNA Primers , Escherichia coli/enzymology , Escherichia coli/growth & development , Genetic Complementation Test , Kinetics , Magnesium/metabolism , Models, Molecular , Plasmids , Protein Binding , Thiamine Pyrophosphate/chemistry
3.
J Mol Biol ; 307(1): 465-77, 2001 Mar 16.
Article in English | MEDLINE | ID: mdl-11243831

ABSTRACT

Valine inhibition of acetohydroxyacid synthase (AHAS) plays an important role in regulation of biosynthesis of branched-chain amino acids in bacteria. Bacterial AHASs are composed of separate catalytic and regulatory subunits; while the catalytic subunits appear to be homologous with several other thiamin diphosphate-dependent enzymes, there has been no model for the structure of the small, regulatory subunits (SSUs). AHAS III is one of three isozymes in Escherichia coli. Its large subunit (encoded by ilvI) by itself has 3-5 % activity of the holoenzyme and is not sensitive to inhibition by valine. The SSU (encoded by ilvH) associates with the large subunit and is required for full catalytic activity and valine sensitivity. The isolated SSU binds valine. The properties of several mutant SSUs shed light on the relation between their structure and regulatory function. Three mutant SSUs were obtained from spontaneous Val(R) bacterial mutants and three more were designed on the basis of an alignment of SSU sequences from valine-sensitive and resistant isozymes, or consideration of the molecular model developed here. Mutant SSUs N11A, G14D, N29H and A36V, when reconstituted with wild-type large subunit, lead to a holoenzyme with drastically reduced valine sensitivity, but with a specific activity similar to that of the wild-type. The isolated G14D and N29H subunits do not bind valine. Mutant Q59L leads to a valine-sensitive holoenzyme and isolated Q59L binds valine. T34I has an intermediate valine sensitivity. The effects of mutations on the affinity of the large subunits for SSUs also vary. D. Fischer's hybrid fold prediction method suggested a fold similarity between the N terminus of the ilvH product and the C-terminal regulatory domain of 3-phosphoglycerate dehydrogenase. On the basis of this prediction, together with the properties of the mutants, a model for the structure of the AHAS SSUs and the location of the valine-binding sites can be proposed.


Subject(s)
Acetolactate Synthase/chemistry , Escherichia coli/enzymology , Acetolactate Synthase/genetics , Allosteric Regulation , Amino Acid Sequence , Escherichia coli/chemistry , Escherichia coli/genetics , Feedback , Holoenzymes/chemistry , Isoenzymes/chemistry , Isoenzymes/genetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Conformation , Protein Folding , Sequence Homology, Amino Acid , Valine/chemistry , Valine/metabolism
6.
J Chromatogr B Biomed Sci Appl ; 743(1-2): 225-9, 2000 Jun 23.
Article in English | MEDLINE | ID: mdl-10942289

ABSTRACT

An aqueous polyethylene glycol/salt two-phase system was used to estimate the dissociation constant, K(dis), of the Escherichia coli isoenzyme AHAS III regulatory subunit, ilvH protein, from the feedback inhibitor valine. The amounts of the bound and free radioactive valine in the system were determined. A Scatchard plot of the data revealed a 1:1 valine-protein binding ratio and K(dis) of 133+/-14 microM. The protein did not bind leucine, and the ilvH protein isolated from a valine resistant mutant showed no valine binding. This method is very simple, rapid and requires only a small amounts of protein compared to the presently used equilibrium dialysis method.


Subject(s)
Acetolactate Synthase/chemistry , Escherichia coli Proteins , Valine/chemistry , Bacterial Proteins/chemistry , Escherichia coli/chemistry , Water/chemistry
7.
J Chromatogr B Biomed Sci Appl ; 743(1-2): 281-6, 2000 Jun 23.
Article in English | MEDLINE | ID: mdl-10942298

ABSTRACT

Extraction in a polyethylene glycol (PEG)-phosphate aqueous two-phase system was considered as a primary step in purification of the acetohydroxy acid synthase III large catalytic subunit from an E. coli extract. Extraction optimization was achieved by varying the system parameters. Two systems with the following weight compositions were chosen for purification: PEG-2000 (16%)-phosphate (6%) and PEG-4000 (14%)-phosphate (5.5%)-KCl (8%), both at pH 7.0 and 1 mg total protein per 1 g system. Significant purification was achieved by a single extraction step with 70% recovery of the enzyme. After an additional ion-exchange chromatography step, pure enzyme was obtained in a 50% overall yield.


Subject(s)
Acetolactate Synthase/isolation & purification , Acetolactate Synthase/chemistry , Catalytic Domain , Chromatography, Ion Exchange , Electrophoresis, Polyacrylamide Gel , Escherichia coli/enzymology , Hydrogen-Ion Concentration , Polyethylene Glycols/chemistry , Potassium Chloride/chemistry , Water/chemistry
8.
Comp Biochem Physiol B Biochem Mol Biol ; 125(2): 205-10, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10817907

ABSTRACT

Whereas the biochemistry of acetohydroxy acid synthase has been extensively studied in bacteria and eukaryotes, relatively little is known about the enzyme in archaea, the third kingdom of life. The present study biochemically characterizes acetohydroxy acid synthase activity in the halophilic archaea Haloferax volcanii. In addressing ion requirements, enzyme inhibition and antibody labeling, the results reveal that, except for its elevated salt requirements, the haloarchaeal enzyme is remarkably similar to its bacterial counterpart.


Subject(s)
Acetolactate Synthase/metabolism , Haloferax volcanii/enzymology , Acetolactate Synthase/chemistry , Amino Acids, Branched-Chain/metabolism , Blotting, Western , Cations, Divalent/metabolism , Enzyme Inhibitors/pharmacology , Haloferax volcanii/drug effects , Kinetics , Potassium Chloride/metabolism
9.
J Bacteriol ; 180(16): 4056-67, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9696751

ABSTRACT

We report here the first quantitative study of the branched-chain amino acid biosynthetic pathway in Salmonella typhimurium LT2. The intracellular levels of the enzymes of the pathway and of the 2-keto acid intermediates were determined under various physiological conditions and used for estimation of several of the fluxes in the cells. The results led to a revision of previous ideas concerning the way in which multiple acetohydroxy acid synthase (AHAS) isozymes contribute to the fitness of enterobacteria. In wild-type LT2, AHAS isozyme I provides most of the flux to valine, leucine, and pantothenate, while isozyme II provides most of the flux to isoleucine. With acetate as a carbon source, a strain expressing AHAS II only is limited in growth because of the low enzyme activity in the presence of elevated levels of the inhibitor glyoxylate. A strain with AHAS I only is limited during growth on glucose by the low tendency of this enzyme to utilize 2-ketobutyrate as a substrate; isoleucine limitation then leads to elevated threonine deaminase activity and an increased 2-ketobutyrate/2-ketoisovalerate ratio, which in turn interferes with the synthesis of coenzyme A and methionine. The regulation of threonine deaminase is also crucial in this regard. It is conceivable that, because of fundamental limitations on the specificity of enzymes, no single AHAS could possibly be adequate for the varied conditions that enterobacteria successfully encounter.


Subject(s)
Amino Acids, Branched-Chain/biosynthesis , Salmonella typhimurium/metabolism , Acetolactate Synthase/antagonists & inhibitors , Acetolactate Synthase/metabolism , Amino Acids/metabolism , Amino Acids, Branched-Chain/analysis , Bacterial Proteins/metabolism , Cell Division , Enzyme Inhibitors/pharmacology , Enzymes/metabolism , Glyoxylates/pharmacology , Isoenzymes/metabolism , Keto Acids/metabolism , Salmonella typhimurium/chemistry , Salmonella typhimurium/enzymology
10.
Biochemistry ; 37(14): 4958-67, 1998 Apr 07.
Article in English | MEDLINE | ID: mdl-9538014

ABSTRACT

The three-dimensional structures of two forms of the D-amino acid aminotransferase (D-aAT) from Bacillus sp. YM-1 have been determined crystallographically: the pyridoxal phosphate (PLP) form and a complex with the reduced analogue of the external aldimine, N-(5'-phosphopyridoxyl)-d-alanine (PPDA). Together with the previously reported pyridoxamine phosphate form of the enzyme [Sugio et al. (1995) Biochemistry 34, 9661], these structures allow us to describe the pathway of the enzymatic reaction in structural terms. A major determinant of the enzyme's stereospecificity for D-amino acids is a group of three residues (Tyr30, Arg98, and His100, with the latter two contributed by the neighboring subunit) forming four hydrogen bonds to the substrate alpha-carboxyl group. The replacement by hydrophobic groups of the homologous residues of the branched chain L-amino acid aminotransferase (which has a similar fold) could explain its opposite stereospecificity. As in L-aspartate aminotransferase (L-AspAT), the cofactor in D-aAT tilts (around its phosphate group and N1 as pivots) away from the catalytic lysine 145 and the protein face in the course of the reaction. Unlike L-AspAT, D-aAT shows no other significant conformational changes during the reaction.


Subject(s)
Alanine Transaminase/metabolism , Alanine Transaminase/chemistry , Bacillus/enzymology , Binding Sites , Catalysis , Crystallography, X-Ray , D-Alanine Transaminase , Diazonium Compounds/chemistry , Diazonium Compounds/metabolism , Molecular Structure , Pyridines/chemistry , Pyridines/metabolism , Pyridoxal Phosphate/chemistry , Pyridoxal Phosphate/metabolism , Pyridoxamine/analogs & derivatives , Pyridoxamine/chemistry , Pyridoxamine/metabolism , Substrate Specificity
11.
Biochemistry ; 35(50): 16282-91, 1996 Dec 17.
Article in English | MEDLINE | ID: mdl-8973202

ABSTRACT

Acetohydroxy acid synthase (AHAS, EC 4.1.3.18) catalyzes the thiamin pyrophosphate (TPP)-dependent decarboxylation of pyruvate and condensation of the resulting two-carbon moiety with a second alpha-keto acid. It belongs to a family of homologous, TPP-dependent enzymes which catalyze different reactions which start from decarboxylation of alpha-keto acids. A model for the structure of Escherichia coli AHAS isozyme II, based on its homology with pyruvate oxidase and experimental testing of the model by site-directed mutagenesis, has been used here to study how AHAS controls the chemical fate of a decarboxylated keto acid. Because of the potential conformational freedom of the reacting substrates, residues interacting with the substrate could not be identified directly from the model of AHAS. Three residues were considered as candidates for involvement in the recognition of alpha-ketobutyrate, as the amino acids at these sites in a unique low-specificity AHAS are different from those in typical AHASs, which are highly specific for reaction with alpha-ketobutyrate as second substrate, in preference to pyruvate. These residues were altered in AHAS II by site-directed mutagenesis. Replacement of Trp464 lowers the specificity by at least 1 order of magnitude, with minor effects on the activity or stability of the enzyme, suggesting that Trp464 contributes > or = 1.3 kcal mol-1 to interaction with the "extra" methyl of alpha-ketobutyrate. Mutations of Met460 or Thr70 have small effects on specificity and do affect other properties of the protein. A model for enzyme-substrate interactions can be proposed on the basis of these results. The model of AHAS also explains previously reported spontaneous mutants of AHAS resistant to sulfonylurea herbicides, which probably bind in the narrow depression which provides access to the bound TPP. A role for the C terminus of the enzyme polypeptide in determination on the reaction pathway is also possible.


Subject(s)
Acetolactate Synthase/chemistry , Acetolactate Synthase/metabolism , Escherichia coli/enzymology , Models, Molecular , Protein Structure, Secondary , Amino Acid Sequence , Base Sequence , Binding Sites , Calorimetry , DNA Primers , Dimerization , Isoenzymes/chemistry , Isoenzymes/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Point Mutation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Tryptophan
12.
Biochemistry ; 35(32): 10339-46, 1996 Aug 13.
Article in English | MEDLINE | ID: mdl-8756689

ABSTRACT

The separately cloned large and small subunits of AHAS isozyme III from Escherichia coli have been isolated and purified. The essentially pure small subunit (17 kDa ilvH product) was obtained by a procedure exploiting its low solubility. The large, catalytic subunit (62 kDa ilvI product) was isolated by standard techniques, to > or = 95% purity. The large subunit has low catalytic activity relative to holoenzyme (approximately 5%) but shows similar substrate specificity and qualitatively similar cofactor dependence and inhibition by a sulfonylurea herbicide. Its activity is insensitive to valine, and the protein does not bind valine. The small subunit binds valine with Kd = 0.2 mM. Reconstitution of the holoenzyme from its subunits leads to a complex with the properties of the native protein, including valine inhibition of activity with Ki = 12 microM. Reconstitution titrations confirm the 1:1 stoichiometry of subunit assembly and a tendency to dissociation (about 50% dissociation near 0.1 microM subunit). Size exclusion HPLC indicates that either subunit alone is largely monomeric, and that assembly of the holoenzyme (two large + two small subunits, 150-160 kDa) requires FAD. On the basis of its homology with pyruvate oxidase and pyruvate decarboxylase, we suggest that the active sites of AHAS III are located at the interface of a dimer of catalytic subunits. Our experiments suggest that such a dimer is not stable except in the presence of the small subunits. The association of valine with sites on the regulatory subunits presumably influences the active sites by an allosteric conformational effect.


Subject(s)
Acetolactate Synthase/metabolism , Escherichia coli/genetics , Isoenzymes/metabolism , Acetolactate Synthase/genetics , Acetolactate Synthase/isolation & purification , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Isoenzymes/genetics , Isoenzymes/isolation & purification , Kinetics , Molecular Weight , Protein Binding , Valine/metabolism
13.
J Bacteriol ; 178(4): 1187-96, 1996 Feb.
Article in English | MEDLINE | ID: mdl-8576056

ABSTRACT

The metabolic effects of inhibitors of two enzymes in the pathway for biosynthesis of branched-chain amino acids were examined in Salmonella typhimurium mutant strain TV105, expressing a single isozyme of acetohydroxy acid synthase (AHAS), AHAS isozyme II. One inhibitor was the sulfonylurea herbicide sulfometuron methyl (SMM), which inhibits this isozyme and AHAS of other organisms, and the other was N-isopropyl oxalylhydroxamate (IpOHA), which inhibits ketol-acid reductoisomerase (KARI). The effects of the inhibitors on growth, levels of several enzymes of the pathway, and levels of intermediates of the pathway were measured. The intracellular concentration of the AHAS substrate 2-ketobutyrate increased on addition of SMM, but a lack of correlation between increased ketobutyrate and growth inhibition suggests that the former is not the immediate cause of the latter. The levels of the keto acid precursor of valine, but not of the precursor of isoleucine, were drastically decreased by SMM, and valine, but not isoleucine, partially overcame SMM inhibition. This apparent stronger effect of SMM on the flux into the valine arm, as opposed to the isoleucine arm, of the branched-chain amino acid pathway is explained by the kinetics of the AHAS reaction, as well as by the different roles of pyruvate, ketobutyrate, and the valine precursor in metabolism. The organization of the pathway thus potentiates the inhibitory effect of SMM. IpOHA has strong initial effects at lower concentrations than does SMM and leads to increases both in the acetohydroxy acid substrates of KARI and, surprisingly, in ketobutyrate. Valine completely protected strain TV105 from IpOHA at the MIC. A number of explanations for this effect can be ruled out, so that some unknown arrangement of the enzymes involved must be suggested. IpOHA led to initial cessation of growth, with partial recovery after a time whose duration increased with the inhibitor concentration. The recovery is apparently due to induction of new KARI synthesis, as well as disappearance of IpOHA from the medium.


Subject(s)
Amino Acids, Branched-Chain/biosynthesis , Enzyme Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Salmonella typhimurium/drug effects , Sulfonylurea Compounds/pharmacology , Acetolactate Synthase/antagonists & inhibitors , Alcohol Oxidoreductases/antagonists & inhibitors , Butyrates/analysis , Cell Division/drug effects , Hydroxybutyrates/analysis , Isoenzymes/antagonists & inhibitors , Ketol-Acid Reductoisomerase , Lactates/analysis , Peptide Chain Elongation, Translational , Salmonella typhimurium/growth & development , Valine/pharmacology
14.
J Bacteriol ; 175(17): 5339-43, 1993 Sep.
Article in English | MEDLINE | ID: mdl-8366022

ABSTRACT

Acetohydroxy acid synthase isozyme III (AHAS III) from Escherichia coli is composed of large and small subunits (encoded by the genes ilvI and ilvH) in an alpha 2 beta 2 structure. The large (61-kDa) subunit apparently contains the catalytic machinery of the enzyme, while the small (17-kDa) subunit is required for specific stabilization of the active conformation of the large subunit as well as for valine sensitivity. The interaction between subunits has been studied by using purified enzyme and extracts containing subcloned subunits. The association between large and small subunits is reversible, with a dissociation constant sufficiently high to have important experimental consequences: the activity of the enzyme shows a concentration dependence curve which is concave upward, and this dependence becomes linear upon the addition of excess large or small subunits. We estimate that at a concentration of 10(-7) M for each subunit (7 micrograms of enzyme ml-1), the large subunits are only half associated as the I2H2 active holoenzyme. This dissociation constant is high enough to cause underestimation of the activity of AHAS III in bacterial extracts. The true activity of this isozyme in extracts is observed in the presence of excess small subunits, which maintain the enzyme in its associated form. Reexamination of an E. coli K-12 ilvBN+ ilvIH+ strain grown in glucose indicates that AHAS III is the major isozyme expressed. As an excess of small subunits does not influence the apparent Ki for valine inhibition of the purified enzyme, it is likely that valine binds to and inhibits I2H2 rather than inducing dissociation. AHAS I and II seem to show a much lower tendency to dissociate than does AHAS III.


Subject(s)
Acetolactate Synthase/genetics , Escherichia coli/enzymology , Isoenzymes/genetics , Acetolactate Synthase/chemistry , Acetolactate Synthase/metabolism , Catalysis , Escherichia coli/genetics , Isoenzymes/chemistry , Isoenzymes/metabolism
15.
J Bacteriol ; 174(17): 5560-6, 1992 Sep.
Article in English | MEDLINE | ID: mdl-1512191

ABSTRACT

The acetohydroxy acid synthase (AHAS) isozymes from enterobacteria are each composed of a large and small subunit in an alpha 2 beta 2 structure. It has been generally accepted that the large (ca. 60-kDa) subunits are catalytic, while the small ones are regulatory. In order to further characterize the roles of the subunits as well as the nature and the specificities of their interactions, we have constructed plasmids encoding the large or small subunits of isozymes AHAS I and AHAS III, each with limited remnants of the other peptide. The catalytic properties of the large subunits have been characterized and compared with those of extracts containing the intact enzyme or of purified enzymes. Antisera to the isolated subunits have been used in Western blot (immunoblot) analyses for qualitative and semiquantitative determinations of the presence of the polypeptides in extracts. The large subunits of AHAS isozymes I and III have lower activities than the intact enzymes: Vmax/Km is 20 to 50 times lower in both cases. However, for AHAS I, most of this difference is due to the raised Km of the large subunit alone, while for AHAS III, it is due to a lowered Vmax. The substrate specificities, R, of large subunits are close to those of the intact enzymes. The catalytic activity of the large subunits of AHAS I is dependent on flavin adenine dinucleotide (FAD), as is that of the intact enzyme, although the apparent affinities of the large subunits alone for FAD are 10-fold lower. Isolated subunits are insensitive to valine inhibition. Nearly all of the properties of the intact AHAS isozyme I or III can be reconstituted by mixing extracts containing the respective large and small subunits. The mixing of subunits from different enzymes does not lead to activation of the large subunits. It is concluded that the catalytic machinery of these AHAS isozymes is entirely contained within the large subunits. The small subunits are required, however, for specific stabilization of an active conformation of the large subunits as well as for value sensitivity.


Subject(s)
Acetolactate Synthase/genetics , Escherichia coli/genetics , Genes, Bacterial , Cloning, Molecular , DNA, Bacterial/genetics , Escherichia coli/enzymology , Flavin-Adenine Dinucleotide/metabolism , Genetic Complementation Test , Isoenzymes/genetics , Restriction Mapping
16.
Anal Biochem ; 191(1): 96-9, 1990 Nov 15.
Article in English | MEDLINE | ID: mdl-2077946

ABSTRACT

The enzyme acetohydroxy acid synthase (AHAS, EC 4.1.3.18) catalyzes two competing reactions of physiological importance: condensation of two molecules of pyruvate to form acetolactate (AL) or condensation of pyruvate and 2-ketobutyrate to form acetohydroxybutyrate (AHB). The activity of AHAS is most frequently analyzed using the Westerfeld method, in which the acetoin formed upon decarboxylation of AL is determined by colorimetric reaction with creatine and alpha-naphthol. However, there has been confusion as to the interpretation of the results of this assay in the presence of both substrates, conditions which lead to formation of both AL and AHB. By applying this assay to enzymatically prepared samples of AL and AHB which have also been analyzed by two other independent methods, we show here that the color yield for AHB in the commonly used assay is 35-40% that for equivalent amounts of acetoin or AL. The relative color yield is not significantly affected by varying the time or temperature of various steps in the color-forming reaction. This information could in principle be used, together with an independent specific assay for AHB, to determine the composition of an AHAS product mixture; it would, however, be less accurate than a simultaneous chromatographic method.


Subject(s)
Acetolactate Synthase/metabolism , Colorimetry/methods , Hydroxybutyrates/analysis , Lactates/analysis , Acetoin/analysis , Chromatography, Gas , Molecular Structure , Temperature , Time Factors
17.
Plant Physiol ; 94(2): 614-20, 1990 Oct.
Article in English | MEDLINE | ID: mdl-16667756

ABSTRACT

Acetohydroxyacid synthase (AHAS) activity was studied in the green unicellular alga Chlorella emersonii. This activity and its regulation was compared in the algae grown autotrophically and heterotrophically on glucose in the dark. No evidence for the existence of more than one enzyme was found. The activity in crude extracts from either heterotrophically or autotrophically grown cells showed a K(m) for pyruvate of 9 millimolar, a 22-fold preference for 2-ketobutyrate over pyruvate as the second substrate, 50% inhibition by 0.5 millimolar valine, and 50% inhibition by 0.3 micromolar sulfometuron methyl (SMM). Spontaneous mutants of the alga resistant to SMM were isolated, which appeared to be single gene mutants containing SMM-resistant AHAS activity. Hence, AHAS appears to be the sole direct target site of SMM in C. emersonii. The fact that the mutants had equivalent SMM resistance under auto- and heterotrophic conditions further supports the conclusion that the same enzyme functions under both physiological regimes. The addition of valine and isoleucine leads to partial relief of SMM inhibition of biomass increase, but not of SMM inhibition of cell division.

18.
J Bacteriol ; 172(6): 3444-9, 1990 Jun.
Article in English | MEDLINE | ID: mdl-2345154

ABSTRACT

Acetohydroxy acid synthase (AHAS; EC 4.1.3.18) catalyzes the following two parallel, physiologically important reactions: condensation of two molecules of pyruvate to form acetolactate (AL), in the pathway to valine and leucine, and condensation of pyruvate plus 2-ketobutyrate to form acetohydroxybutyrate (AHB), in the pathway to isoleucine. We have determined the specificity ratio R with regard to these two reactions (where VAHB and VAL are rates of formation of the respective products) as follows: VAHB/VAL = R [2-ketobutyrate]/[pyruvate] for 14 enzymes from 10 procaryotic and eucaryotic organisms. Each organism considered has at least one AHAS of R greater than 20, and some appear to contain but a single biosynthetic AHAS. The implications of this for the design of the pathway are discussed. The selective pressure for high specificity for 2-ketobutyrate versus pyruvate implies that the 2-ketobutyrate concentration is much lower than the pyruvate concentration in all these organisms. It seems important for 2-ketobutyrate levels to be relatively low to avoid a variety of metabolic interferences. These results also reinforce the conclusion that biosynthetic AHAS isozymes of low R (1 to 2) are a special adaptation for heterotrophic growth on certain poor carbon sources. Two catabolic "pH 6 AL-synthesizing enzymes" are shown to be highly specific for AL formation only (R less than 0.1).


Subject(s)
Acetolactate Synthase/physiology , Oxo-Acid-Lyases/physiology , Acetolactate Synthase/analysis , Butyrates/metabolism , Hydrogen-Ion Concentration , Pyruvates/metabolism , Pyruvic Acid , Substrate Specificity
19.
Biochemistry ; 28(15): 6310-7, 1989 Jul 25.
Article in English | MEDLINE | ID: mdl-2675968

ABSTRACT

Acetohydroxy acid synthase (AHAS, EC 4.1.3.18) isozyme III from Escherichia coli has been studied in steady-state kinetic experiments in which the rates of formation of acetolactate (AL) and acetohydroxybutyrate (AHB) have been determined simultaneously. The ratio between the rates of production of the two alternative products and the concentrations of the substrates pyruvate and 2-ketobutyrate (2KB) leading to them, R, VAHB/VAL = R[( 2KB]/[pyruvate]), was found to be 40 +/- 3 under a wide variety of conditions. Because pyruvate is a common substrate in the reactions leading to both products and competes with 2-ketobutyrate to determine whether AL or AHB is formed, steady-state kinetic studies are unusually informative for this enzyme. At a given pyruvate concentration, the sum of the rates of formation of AL and AHB was nearly independent of the 2-ketobutyrate concentration. On the basis of these results, a mechanism is proposed for the enzyme that involves irreversible and rate-determining reaction of pyruvate, at a site which accepts 2-ketobutyrate poorly, if at all, to form an intermediate common to all the reactions. In the second phase of the reaction, various 2-keto acids can compete for this intermediate to form the respective acetohydroxy acids. 2-Keto acids other than the natural substrates pyruvate and 2-ketobutyrate may also compete, to a greater or lesser extent, in the second phase of the reaction to yield alternative products, e.g., 2-ketovalerate is preferred by about 2.5-fold over pyruvate. However, the presence of an additional keto acid does not affect the relative specificity of the enzyme for pyruvate and 2-ketobutyrate; this further supports the proposed mechanism. The substrate specificity in the second phase is an intrinsic property of the enzyme, unaffected by pH or feedback inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Acetolactate Synthase/metabolism , Escherichia coli/enzymology , Isoenzymes/metabolism , Oxo-Acid-Lyases/metabolism , Acetolactate Synthase/antagonists & inhibitors , Glyoxylates/pharmacology , Isoenzymes/antagonists & inhibitors , Kinetics , Mathematics , Models, Theoretical , Pyruvates/metabolism , Valine/pharmacology
20.
Biochemistry ; 28(2): 793-9, 1989 Jan 24.
Article in English | MEDLINE | ID: mdl-2523730

ABSTRACT

The interaction of Ca2+ and vanadate with fluorescein isothiocyanate (FITC) labeled sarcoplasmic reticulum (SR) Ca2+-ATPase has been studied by following the kinetics of changes in the reporter group fluorescence and equilibrium fluorescence levels. The vanadate species bound to the enzyme is clearly monomeric orthovanadate, probably H2VO4-. Vanadate binding is noncooperative, suggesting an absence of interactions between the Ca2+-ATPase subunits. The fluorescence experiments confirm the existence of a calcium-enzyme-vanadate complex (in the presence of magnesium). On the basis of the fluorescence properties of this complex, it is similar in its conformation to the calcium-enzyme complex, i.e., "E1-like" rather than "E2-like". However, Ca2+ binds to the enzyme-vanadate complex via sites that are only accessible from the interior of the SR vesicles. The complex Ca2E*Van, which is rapidly formed, isomerizes very slowly (t1/2 approximately 1 min) to the stable ternary complex. The mutual destabilization between bound vanadate and two bound Ca2+ ions is only 1.6 kcal/mol, much smaller than that produced by the interaction of calcium and phosphate.


Subject(s)
Calcium-Transporting ATPases/metabolism , Calcium/metabolism , Sarcoplasmic Reticulum/enzymology , Vanadates/metabolism , Animals , Fluorescein-5-isothiocyanate , Fluoresceins , Fluorescent Dyes , Hydrogen-Ion Concentration , Kinetics , Mathematics , Models, Theoretical , Muscles/enzymology , Protein Binding , Rabbits , Thiocyanates
SELECTION OF CITATIONS
SEARCH DETAIL