Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 19(7): 6269-83, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21451652

ABSTRACT

We performed theoretical and experimental investigations of the magnetic properties of metamaterials based on asymmetric double-wire structures. Using the multipole model for the description of metamaterials, we investigated the influence of the geometrical asymmetry of the structure on the macroscopic effective parameters. The results show that the larger wire in the system dominates the dynamics of the structure and defines the orientation and the strength of the microscopic currents. As a result the magnetization of the structure can be significantly enhanced for certain asymmetric configurations of the double-wire structure.


Subject(s)
Metals/chemistry , Models, Chemical , Computer Simulation , Light , Materials Testing , Refractometry , Scattering, Radiation
2.
Opt Express ; 18(14): 14454-66, 2010 Jul 05.
Article in English | MEDLINE | ID: mdl-20639930

ABSTRACT

We introduce a technique to decompose the scattered near field of two-dimensional arbitrary metaatoms into its multipole contributions. To this end we expand the scattered field upon plane wave illumination into cylindrical harmonics as known from Mie's theory. By relating these cylindrical harmonics to the field radiated by Cartesian multipoles, the contribution of the lowest order electric and magnetic multipoles can be identified. Revealing these multipoles is essential for the design of metamaterials because they largely determine the character of light propagation. In particular, having this information at hand it is straightforward to distinguish between effects that result either from the arrangement of the metaatoms or from their particular design.

3.
Opt Lett ; 34(5): 704-6, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19252599

ABSTRACT

We present and evaluate theoretically and experimentally a design for a negative-index metamaterial that is termed the "Swiss cross" structure. Compared with the established fishnet structure, the proposed design eliminates the drawback of polarization-dependent effective optical parameters. The new design is fabricated by means of e-beam technology and experimentally analyzed using spectroscopic techniques. The thorough comparison with numerical simulations reveals an effective refractive index of n=-1.9 at an operational wavelength of 1400 nm that is independent of the incident polarization. The resonances of the system are comprehensively discussed.

4.
Opt Express ; 16(9): 6285-301, 2008 Apr 28.
Article in English | MEDLINE | ID: mdl-18545332

ABSTRACT

Results of detailed experimental investigations of the power and sweeping speed dependent resonance bandwidth and resonance wavelength shift in microsphere resonators are presented. The experimental manifestations of the nonlinear effects for the different sweeping modes are considered and a possibility of separation between the Kerr and thermal nonlinearities is discussed. As it follows from the detailed comparison between theory and experiments, a single mode theoretical model, based on the mean field approximation, gives a satisfactory description of the experimental data only at small coupling powers and fast sweeping. For example, the values of Kerr nonlinearity, obtained through the fitting of the experimental data, are far from the expected, commonly used ones.


Subject(s)
Microspheres , Nonlinear Dynamics , Optics and Photonics , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...