Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 120992, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35220052

ABSTRACT

SERS analysis of biofluids, coupled with classification algorithms, has recently emerged as a candidate for point-of-care medical diagnosis. Nonetheless, despite the impressive results reported in the literature, there are still gaps in our knowledge of the biochemical information provided by the SERS analysis of biofluids. Therefore, by a critical assignment of the SERS bands, our work aims to provide a systematic analysis of the molecular information that can be achieved from the SERS analysis of serum and urine obtained from breast cancer patients and controls. Further, we compared the relative performance of five different machine learning algorithms for breast cancer and control samples classification based on the serum and urine SERS datasets, and found comparable classification accuracies in the range of 61-89%. This result is not surprising since both biofluids show striking similarities in their SERS spectra providing similar metabolic information, related to purine metabolites. Lastly, by carefully comparing the two datasets (i.e., serum and urine) we show that it is possible to link the misclassified samples to specific metabolic imbalances, such as carotenoid levels, or variations in the creatinine concentration.


Subject(s)
Breast Neoplasms , Algorithms , Breast Neoplasms/diagnosis , Female , Humans , Liquid Biopsy , Serum , Spectrum Analysis, Raman/methods
2.
Entropy (Basel) ; 23(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064042

ABSTRACT

Proteins are essential molecules, that must correctly perform their roles for the good health of living organisms. The majority of proteins operate in complexes and the way they interact has pivotal influence on the proper functioning of such organisms. In this study we address the problem of protein-protein interaction and we propose and investigate a method based on the use of an ensemble of autoencoders. Our approach, entitled AutoPPI, adopts a strategy based on two autoencoders, one for each type of interactions (positive and negative) and we advance three types of neural network architectures for the autoencoders. Experiments were performed on several data sets comprising proteins from four different species. The results indicate good performances of our proposed model, with accuracy and AUC values of over 0.97 in all cases. The best performing model relies on a Siamese architecture in both the encoder and the decoder, which advantageously captures common features in protein pairs. Comparisons with other machine learning techniques applied for the same problem prove that AutoPPI outperforms most of its contenders, for the considered data sets.

3.
Sensors (Basel) ; 18(5)2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29701721

ABSTRACT

Fall detection is a very important challenge that affects both elderly people and the carers. Improvements in fall detection would reduce the aid response time. This research focuses on a method for fall detection with a sensor placed on the wrist. Falls are detected using a published threshold-based solution, although a study on threshold tuning has been carried out. The feature extraction is extended in order to balance the dataset for the minority class. Alternative models have been analyzed to reduce the computational constraints so the solution can be embedded in smart-phones or smart wristbands. Several published datasets have been used in the Materials and Methods section. Although these datasets do not include data from real falls of elderly people, a complete comparison study of fall-related datasets shows statistical differences between the simulated falls and real falls from participants suffering from impairment diseases. Given the obtained results, the rule-based systems represent a promising research line as they perform similarly to neural networks, but with a reduced computational cost. Furthermore, support vector machines performed with a high specificity. However, further research to validate the proposal in real on-line scenarios is needed. Furthermore, a slight improvement should be made to reduce the number of false alarms.

4.
Molecules ; 20(5): 8997-9028, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25996209

ABSTRACT

This paper describes the development of the unified conformational sampling and docking tool called Sampler for Multiple Protein-Ligand Entities (S4MPLE). The main novelty in S4MPLE is the unified dealing with intra- and intermolecular degrees of freedom (DoF). While classically programs are either designed for folding or docking, S4MPLE transcends this artificial specialization. It supports folding, docking of a flexible ligand into a flexible site and simultaneous docking of several ligands. The trick behind it is the formal assimilation of inter-molecular to intra-molecular DoF associated to putative inter-molecular contact axes. This is implemented within the genetic operators powering a Lamarckian Genetic Algorithm (GA). Further novelty includes differentiable interaction fingerprints to control population diversity, and fitting a simple continuum solvent model and favorable contact bonus terms to the AMBER/GAFF force field. Novel applications-docking of fragment-like compounds, simultaneous docking of multiple ligands, including free crystallographic waters-were published elsewhere. This paper discusses: (a) methodology, (b) set-up of the force field energy functions and (c) their validation in classical redocking tests. More than 80% success in redocking was achieved (RMSD of top-ranked pose < 2.0 Å).


Subject(s)
Molecular Docking Simulation/methods , Proteins/chemistry , Algorithms , Benchmarking , Computer Simulation , Ligands , Molecular Docking Simulation/standards , Protein Conformation , Protein Folding , Proteins/metabolism , Software
5.
Int J Neural Syst ; 25(4): 1450036, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25684369

ABSTRACT

The development of efficient stroke-detection methods is of significant importance in today's society due to the effects and impact of stroke on health and economy worldwide. This study focuses on Human Activity Recognition (HAR), which is a key component in developing an early stroke-diagnosis tool. An overview of the proposed global approach able to discriminate normal resting from stroke-related paralysis is detailed. The main contributions include an extension of the Genetic Fuzzy Finite State Machine (GFFSM) method and a new hybrid feature selection (FS) algorithm involving Principal Component Analysis (PCA) and a voting scheme putting the cross-validation results together. Experimental results show that the proposed approach is a well-performing HAR tool that can be successfully embedded in devices.


Subject(s)
Activities of Daily Living , Early Diagnosis , Motor Activity/physiology , Pattern Recognition, Automated/methods , Stroke/diagnosis , Algorithms , Artificial Intelligence , Fuzzy Logic , Humans , Stroke/physiopathology
6.
PLoS One ; 9(10): e108177, 2014.
Article in English | MEDLINE | ID: mdl-25271778

ABSTRACT

Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.


Subject(s)
Cell Biology , Models, Biological , Algorithms
7.
Int J Neural Syst ; 24(6): 1450018, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25081426

ABSTRACT

A challenging task in time-course microarray data analysis is to cluster genes meaningfully combining the information provided by multiple replicates covering the same key time points. This paper proposes a novel cluster merging method to accomplish this goal obtaining groups with highly correlated genes. The main idea behind the proposed method is to generate a clustering starting from groups created based on individual temporal series (representing different biological replicates measured in the same time points) and merging them by taking into account the frequency by which two genes are assembled together in each clustering. The gene groups at the level of individual time series are generated using several shape-based clustering methods. This study is focused on a real-world time series microarray task with the aim to find co-expressed genes related to the production and growth of a certain bacteria. The shape-based clustering methods used at the level of individual time series rely on identifying similar gene expression patterns over time which, in some models, are further matched to the pattern of production/growth. The proposed cluster merging method is able to produce meaningful gene groups which can be naturally ranked by the level of agreement on the clustering among individual time series. The list of clusters and genes is further sorted based on the information correlation coefficient and new problem-specific relevant measures. Computational experiments and results of the cluster merging method are analyzed from a biological perspective and further compared with the clustering generated based on the mean value of time series and the same shape-based algorithm.


Subject(s)
Cluster Analysis , Microarray Analysis , Models, Theoretical , Multigene Family/physiology , Animals , Humans , Pattern Recognition, Automated , Time Factors
8.
PLoS One ; 9(2): e86891, 2014.
Article in English | MEDLINE | ID: mdl-24586257

ABSTRACT

The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.


Subject(s)
Game Theory
9.
BioData Min ; 4: 23, 2011 Jul 30.
Article in English | MEDLINE | ID: mdl-21801435

ABSTRACT

Proteins are complex structures made of amino acids having a fundamental role in the correct functioning of living cells. The structure of a protein is the result of the protein folding process. However, the general principles that govern the folding of natural proteins into a native structure are unknown. The problem of predicting a protein structure with minimum-energy starting from the unfolded amino acid sequence is a highly complex and important task in molecular and computational biology. Protein structure prediction has important applications in fields such as drug design and disease prediction. The protein structure prediction problem is NP-hard even in simplified lattice protein models. An evolutionary model based on hill-climbing genetic operators is proposed for protein structure prediction in the hydrophobic - polar (HP) model. Problem-specific search operators are implemented and applied using a steepest-ascent hill-climbing approach. Furthermore, the proposed model enforces an explicit diversification stage during the evolution in order to avoid local optimum. The main features of the resulting evolutionary algorithm - hill-climbing mechanism and diversification strategy - are evaluated in a set of numerical experiments for the protein structure prediction problem to assess their impact to the efficiency of the search process. Furthermore, the emerging consolidated model is compared to relevant algorithms from the literature for a set of difficult bidimensional instances from lattice protein models. The results obtained by the proposed algorithm are promising and competitive with those of related methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...