Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer Res Clin Oncol ; 149(15): 14035-14043, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37548775

ABSTRACT

PURPOSE: Pathogenic fusion events involving neurotrophic receptor tyrosine kinase (NTRK) have been described in ~ 2% of differentiated thyroid cancer (DTC). The selective tropomyosin receptor kinase (TRK) inhibitors entrectinib and larotrectinib have been approved in a tumor agnostic manner based on phase 1/2 clinical trials. In a real-world setting at five referral centers, we aimed to describe the prevalence of NTRK gene fusions and the efficacy and safety of TRK inhibitor treatment for non-medullary, advanced thyroid cancer (TC). METHODS: A total of 184 TC patients with testing for NTRK gene fusions were included. Progression-free survival (PFS) and overall survival (OS) probabilities were estimated using the Kaplan-Meier method in six patients with NTRK fusion-positive TC who underwent TRK inhibitor therapy. RESULTS: 8/184 (4%) patients harbored NTRK gene fusions. Six patients with radioiodine (RAI)-refractory TC harboring NTRK1 (n = 4) and NTRK3 (n = 2) gene fusions were treated with larotrectinib. Five patients (83%) had received ≥ 1 prior systemic therapy and one patient did not receive prior systemic therapy. All patients had morphologically progressive disease before treatment initiation. Objective response rate was 83%, including two complete remissions. Median PFS from start of TRK inhibitor treatment was 23 months (95% confidence interval [CI], 0-57.4) and median OS was not reached (NR) (95% CI, NR). Adverse events were of grade 1-3. CONCLUSION: The prevalence of NTRK gene fusions in our cohort of RAI-refractory TC is slightly higher than reported for all TC patients. Larotrectinib is an effective treatment option in the majority of NTRK gene fusion-positive advanced TC patients after prior systemic treatment and has a favorable safety profile.

2.
J Neurooncol ; 153(1): 109-120, 2021 May.
Article in English | MEDLINE | ID: mdl-33905054

ABSTRACT

PURPOSE: High-grade astrocytoma with piloid features (HGAP) is a recently described brain tumor entity defined by a specific DNA methylation profile. HGAP has been proposed to be integrated in the upcoming World Health Organization classification of central nervous system tumors expected in 2021. In this series, we present the first single-center experience with this new entity. METHODS: During 2017 and 2020, six HGAP were identified. Clinical course, surgical procedure, histopathology, genome-wide DNA methylation analysis, imaging, and adjuvant therapy were collected. RESULTS: Tumors were localized in the brain stem (n = 1), cerebellar peduncle (n = 1), diencephalon (n = 1), mesencephalon (n = 1), cerebrum (n = 1) and the thoracic spinal cord (n = 2). The lesions typically presented as T1w hypo- to isointense and T2w hyperintense with inhomogeneous contrast enhancement on MRI. All patients underwent initial surgical intervention. Three patients received adjuvant radiochemotherapy, and one patient adjuvant radiotherapy alone. Four patients died of disease, with an overall survival of 1.8, 9.1, 14.8 and 18.1 months. One patient was alive at the time of last follow-up, 14.6 months after surgery, and one patient was lost to follow-up. Apart from one tumor, the lesions did not present with high grade histology, however patients showed poor clinical outcomes. CONCLUSIONS: Here, we provide detailed clinical, neuroradiological, histological, and molecular pathological information which might aid in clinical decision making until larger case series are published. With the exception of one case, the tumors did not present with high-grade histology but patients still showed short intervals between diagnosis and tumor progression or death even after extensive multimodal therapy.


Subject(s)
Astrocytoma , Central Nervous System Neoplasms , Astrocytoma/diagnostic imaging , Astrocytoma/therapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Central Nervous System Neoplasms/diagnostic imaging , Central Nervous System Neoplasms/therapy , Gonadotropin-Releasing Hormone , Humans , Magnetic Resonance Imaging , Protein Precursors
SELECTION OF CITATIONS
SEARCH DETAIL
...