Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 21(2): 170-181, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37710020

ABSTRACT

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.


Subject(s)
Checklist , Publishing , Reproducibility of Results , Image Processing, Computer-Assisted , Microscopy
2.
ArXiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-36824427

ABSTRACT

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality and explanatory power of microscopy data is in publications.

3.
Rev Sci Instrum ; 79(11): 114901, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19045905

ABSTRACT

We describe a simple approach for rejecting unwanted scattered light in two types of time-resolved pump-probe measurements, time-domain thermoreflectance (TDTR) and time-resolved incoherent anti-Stokes Raman scattering (TRIARS). Sharp edged optical filters are used to create spectrally distinct pump and probe beams from the broad spectral output of a femtosecond Ti:sapphire laser oscillator. For TDTR, the diffusely scattered pump light is then blocked by a third optical filter. For TRIARS, depolarized scattering created by the pump is shifted in frequency by approximately 250 cm(-1) relative to the polarized scattering created by the probe; therefore, spectral features created by the pump and probe scattering can be easily distinguished.

4.
Science ; 315(5810): 351-3, 2007 Jan 19.
Article in English | MEDLINE | ID: mdl-17170252

ABSTRACT

The cross-plane thermal conductivity of thin films of WSe2 grown from alternating W and Se layers is as small as 0.05 watts per meter per degree kelvin at room temperature, 30 times smaller than the c-axis thermal conductivity of single-crystal WSe2 and a factor of 6 smaller than the predicted minimum thermal conductivity for this material. We attribute the ultralow thermal conductivity of these disordered, layered crystals to the localization of lattice vibrations induced by the random stacking of two-dimensional crystalline WSe2 sheets. Disordering of the layered structure by ion bombardment increases the thermal conductivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...