Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(24): 8424-8434, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37278977

ABSTRACT

The strong influence of an amphiphilic polyelectrolyte, poly(N,N-diallyl-N-hexyl-N-methylammonium chloride), on the surface properties of solutions of globular proteins (lysozyme, ß-lactoglobulin, bovine serum albumin, and green fluorescent protein) depends on the protein structure and allows elucidation of the contribution of hydrophobic interactions in the protein-polyelectrolyte complex formation at the liquid-gas interface. At the beginning of adsorption, the surface properties are determined by the unbound amphiphilic component, but the influence of the protein-polyelectrolyte complexes of high surface activity increases at the approach to equilibrium. The kinetic dependencies of the dilational dynamic surface elasticity with one or two local maxima give a possibility to distinguish clearly between different steps of the adsorption process and to trace the formation of the distal region of the adsorption layer. The conclusions from the surface rheological data are corroborated by ellipsometric and tensiometric results.


Subject(s)
Serum Albumin, Bovine , Polyelectrolytes , Surface Properties , Serum Albumin, Bovine/chemistry , Hydrophobic and Hydrophilic Interactions , Green Fluorescent Proteins , Adsorption , Solutions
2.
Int J Mol Sci ; 23(20)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36293234

ABSTRACT

The interactions of DNA with lysozyme in the surface layer were studied by performing infrared reflection-absorption spectroscopy (IRRAS), ellipsometry, surface tensiometry, surface dilational rheology, and atomic force microscopy (AFM). A concentrated DNA solution was injected into an aqueous subphase underneath a spread lysozyme layer. While the optical properties of the surface layer changed fast after DNA injection, the dynamic dilational surface elasticity almost did not change, thereby indicating no continuous network formation of DNA/lysozyme complexes, unlike the case of DNA interactions with a monolayer of a cationic synthetic polyelectrolyte. A relatively fast increase in optical signals after a DNA injection under a lysozyme layer indicates that DNA penetration is controlled by diffusion. At low surface pressures, the AFM images show the formation of long strands in the surface layer. Increased surface compression does not lead to the formation of a network of DNA/lysozyme aggregates as in the case of a mixed layer of DNA and synthetic polyelectrolytes, but to the appearance of some folds and ridges in the layer. The formation of more disordered aggregates is presumably a consequence of weaker interactions of lysozyme with duplex DNA and the stabilization, at the same time, of loops of unpaired nucleotides at high local lysozyme concentrations in the surface layer.


Subject(s)
Muramidase , Water , Muramidase/chemistry , Adsorption , Polyelectrolytes , Surface Properties , Water/chemistry , DNA , Nucleotides
3.
Polymers (Basel) ; 13(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34451359

ABSTRACT

The formation of ordered 2D nanostructures of double stranded DNA molecules at various interfaces attracts more and more focus in medical and engineering research, but the underlying intermolecular interactions still require elucidation. Recently, it has been revealed that mixtures of DNA with a series of hydrophobic cationic polyelectrolytes including poly(N,N-diallyl-N-hexyl-N-methylammonium) chloride (PDAHMAC) form a network of ribbonlike or threadlike aggregates at the solution-air interface. In the present work, we adopt a novel approach to confine the same polyelectrolyte at the solution-air interface by spreading it on a subphase with elevated ionic strength. A suite of techniques-rheology, microscopy, ellipsometry, and spectroscopy-are applied to gain insight into main steps of the adsorption layer formation, which results in non-monotonic kinetic dependencies of various surface properties. A long induction period of the kinetic dependencies after DNA is exposed to the surface film results only if the initial surface pressure corresponds to a quasiplateau region of the compression isotherm of a PDAHMAC monolayer. Despite the different aggregation mechanisms, the micromorphology of the mixed PDAHMAC/DNA does not depend noticeably on the initial surface pressure. The results provide new perspective on nanostructure formation involving nucleic acids building blocks.

4.
Langmuir ; 35(10): 3773-3779, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30762366

ABSTRACT

Application of dilational surface rheology, surface tensiometry, ellipsometry, Brewster angle, and transmission electron and atomic force microscopies allowed the estimation of the structure of the adsorption layer of a fullerenol with a large number of hydroxyl groups, C60(OH) X ( X = 30 ± 2). The surface properties of fullerenol solutions proved to be similar to the properties of dispersions of solid nanoparticles and differ from those of the solutions of conventional surfactants and amphiphilic macromolecules. Although the surface activity of fullerenol is not high, it forms adsorption layers of high surface elasticity up to 170 mN/m. The layer consists of small interconnected surface aggregates with the thickness corresponding to two-three layers of fullerenol molecules. The aggregates are not adsorbed from the bulk phase but formed at the interface. The adsorption kinetics is controlled by an electrostatic adsorption barrier at the interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...