Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(17): 177701, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36332252

ABSTRACT

High fidelity quantum information processing requires a combination of fast gates and long-lived quantum memories. In this Letter, we propose a hybrid architecture, where a parity-protected superconducting qubit is directly coupled to a Majorana qubit, which plays the role of a quantum memory. The superconducting qubit is based upon a π-periodic Josephson junction realized with gate-tunable semiconducting wires, where the tunneling of individual Cooper pairs is suppressed. One of the wires additionally contains four Majorana zero modes that define a qubit. We demonstrate that this enables the implementation of a SWAP gate, allowing for the transduction of quantum information between the topological and conventional qubit. This architecture combines fast gates, which can be realized with the superconducting qubit, with a topologically protected Majorana memory.

2.
Phys Rev Lett ; 128(21): 217703, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35687455

ABSTRACT

In superconductors that lack inversion symmetry, the flow of supercurrent can induce a nonvanishing magnetization, a phenomenon which is at the heart of nondissipative magnetoelectric effects, also known as Edelstein effects. For electrons carrying spin and orbital moments, a question of fundamental relevance deals with the orbital nature of magnetoelectric effects in conventional spin-singlet superconductors with Rashba coupling. Remarkably, we find that the supercurrent-induced orbital magnetization is more than 1 order of magnitude greater than that due to the spin, giving rise to a colossal magnetoelectric effect. The induced orbital magnetization is shown to be sign tunable, with the sign change occurring for the Fermi level lying in proximity of avoiding crossing points in the Brillouin zone. In the presence of superconducting phase inhomogeneities, a modulation of the Edelstein signal on the scale of the superconducting coherence length appears, leading to domains with opposite orbital moment orientations. These hallmarks are robust to real-space self-consistent treatment of the superconducting order parameter. The orbital-dominated magnetoelectric phenomena, hence, have clear-cut marks for detection both in the bulk and at the edge of the system and are expected to be a general feature of multiorbital superconductors with inversion symmetry breaking.

3.
Phys Rev Lett ; 126(18): 187701, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34018786

ABSTRACT

In superconducting circuits interrupted by Josephson junctions, the dependence of the energy spectrum on offset charges on different islands is 2e periodic through the Aharonov-Casher effect and resembles a crystal band structure that reflects the symmetries of the Josephson potential. We show that higher-harmonic Josephson elements described by a cos(2φ) energy-phase relation provide an increased freedom to tailor the shape of the Josephson potential and design spectra featuring multiplets of flat bands and Dirac points in the charge Brillouin zone. Flat bands provide noise-insensitive energy levels, and consequently, engineering band pairs with flat spectral gaps can help improve the coherence of the system. We discuss a modified version of a flux qubit that achieves, in principle, no decoherence from charge noise and introduce a flux qutrit that shows a spin-1 Dirac spectrum and is simultaneously quite robust to both charge and flux noise.

4.
Chem Soc Rev ; 46(15): 4387-4399, 2017 Jul 31.
Article in English | MEDLINE | ID: mdl-28640314

ABSTRACT

This tutorial review presents an overview of the basic theoretical aspects of two-dimensional (2D) crystals. We revise essential aspects of graphene and the new families of semiconducting 2D materials, like transition metal dichalcogenides or black phosphorus. Minimal theoretical models for various materials are presented. Some of the exciting new possibilities offered by 2D crystals are discussed, such as manipulation and control of quantum degrees of freedom (spin and pseudospin), confinement of excitons, control of the electronic and optical properties with strain engineering, or unconventional superconducting phases.

5.
Nat Commun ; 7: 11043, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26984768

ABSTRACT

The ability to exfoliate layered materials down to the single layer limit has presented the opportunity to understand how a gradual reduction in dimensionality affects the properties of bulk materials. Here we use this top-down approach to address the problem of superconductivity in the two-dimensional limit. The transport properties of electronic devices based on 2H tantalum disulfide flakes of different thicknesses are presented. We observe that superconductivity persists down to the thinnest layer investigated (3.5 nm), and interestingly, we find a pronounced enhancement in the critical temperature from 0.5 to 2.2 K as the layers are thinned down. In addition, we propose a tight-binding model, which allows us to attribute this phenomenon to an enhancement of the effective electron-phonon coupling constant. This work provides evidence that reducing the dimensionality can strengthen superconductivity as opposed to the weakening effect that has been reported in other 2D materials so far.

6.
Phys Rev Lett ; 111(3): 036801, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23909349

ABSTRACT

We study Coulomb interactions in the finite bias response of Mach-Zehnder interferometers, which exploit copropagating edge states in the integer quantum Hall effect. Here, interactions are particularly important since the coherent coupling of edge channels is due to a resonant mechanism that is spoiled by inelastic processes. We find that interactions yield a saturation, as a function of bias voltage, of the period-averaged interferometer current, which gives rise to unusual features, such as negative differential conductance, enhancement of the visibility of the current, and nonbounded or even diverging visibility of the differential conductance.

7.
Phys Rev Lett ; 109(26): 267404, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23368619

ABSTRACT

The unique optoelectronic properties of graphene make this two-dimensional material an ideal platform for fundamental studies of cavity quantum electrodynamics in the strong-coupling regime. The celebrated Dicke model of cavity quantum electrodynamics can be approximately realized in this material when the cyclotron transition of its 2D massless Dirac fermion carriers is nearly resonant with a cavity photon mode. We develop the theory of strong matter-photon coupling in this circumstance, emphasizing the essential role of a dynamically generated matter energy term that is quadratic in the photon field and absent in graphene's low-energy Dirac model.

8.
Phys Rev Lett ; 107(23): 236804, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22182116

ABSTRACT

We introduce and experimentally demonstrate a new method that allows us to controllably couple copropagating spin-resolved edge states of a two-dimensional electron gas (2DEG) in the integer quantum Hall regime. The scheme exploits a spatially periodic in-plane magnetic field that is created by an array of Cobalt nanomagnets placed at the boundary of the 2DEG. A maximum charge or spin transfer of 28±1% is achieved at 250 mK.

9.
Phys Rev Lett ; 104(23): 230502, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20867219

ABSTRACT

We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...