Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Epigenetics Chromatin ; 13(1): 50, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33225957

ABSTRACT

BACKGROUND: The malaria parasite Plasmodium falciparum has an unusually euchromatic genome with poorly conserved positioning of nucleosomes in intergenic sequences and poorly understood mechanisms of gene regulation. Variant histones and histone modifications determine nucleosome stability and recruit trans factors, but their combinatorial contribution to gene regulation is unclear. RESULTS: Here, we show that the histone H3 acetylations H3K18ac and H3K27ac and the variant histone Pf H2A.Z are enriched together at regulatory sites upstream of genes. H3K18ac and H3K27ac together dynamically mark regulatory regions of genes expressed during the asexual life cycle. In contrast, H3K4me1 is depleted in intergenic sequence and dynamically depleted upstream of expressed genes. The temporal pattern of H3K27ac and H3K18ac enrichment indicates that they accumulate during S phase and mitosis and are retained at regulatory sequences until at least G1 phase and after cessation of expression of the cognate genes. We integrated our ChIPseq data with existing datasets to show that in schizont stages H3K18ac, H3K27ac and Pf H2A.Z colocalise with the transcription factor PfAP2-I and the bromodomain protein PfBDP1 and are enriched at stably positioned nucleosomes within regions of exposed DNA at active transcriptional start sites. Using transient transfections we showed that sequences enriched with colocalised H3K18ac, H3K27ac and Pf H2A.Z possess promoter activity in schizont stages, but no enhancer-like activity. CONCLUSIONS: The dynamic H3 acetylations define P. falciparum regulatory sequences and contribute to gene activation. These findings expand the knowledge of the chromatin landscape that regulates gene expression in P. falciparum.


Subject(s)
Histone Code , Plasmodium falciparum/genetics , Promoter Regions, Genetic , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism , Schizonts/metabolism , Transcription Factors/metabolism
2.
Expert Opin Drug Discov ; 15(4): 415-425, 2020 04.
Article in English | MEDLINE | ID: mdl-31870185

ABSTRACT

Introduction: Bromodomains (BRDs) bind to acetylated lysine residues, often on histones. The BRD proteins can contribute to gene regulation either directly through enzymatic activity or indirectly through recruitment of chromatin-modifying complexes or transcription factors. There is no evidence of direct orthologues of the Plasmodium falciparum BRD proteins (PfBDPs) outside the apicomplexans. PfBDPs are expressed during the parasite's life cycle in both the human host's blood and in the mosquito. PfBDPs could also prove to be promising targets for novel antimalarials, which are urgently required to address increasing drug resistance.Areas covered: This review discusses recent studies of the biology of PfBDPs, current target-based strategies for PfBDP inhibitor discovery, and different approaches to the important step of validating the specificity of hit compounds for PfBDPs.Expert opinion: The novelty of Plasmodium BRDs suggests that they could be targeted by selective compounds. Chemical series that showed promise in screens against human BRDs could be leveraged to create targeted compound libraries, as could hits from P. falciparum phenotypic screens. These targeted libraries and hits could be screened in target-based strategies aimed at discovery and optimization of novel inhibitors of PfBDPs. A key task for the field is to generate parasite assays to validate the hit compounds' specificity for PfBDPs.


Subject(s)
Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Animals , Drug Design , Drug Discovery , Drug Resistance , Humans , Malaria, Falciparum/parasitology , Protozoan Proteins/antagonists & inhibitors
3.
FEBS J ; 285(11): 2037-2055, 2018 06.
Article in English | MEDLINE | ID: mdl-29637707

ABSTRACT

The pathogenic nature of malaria infections is due in part to the export of hundreds of effector proteins that actively remodel the host erythrocyte. The Plasmodium translocon of exported proteins (PTEX) has been shown to facilitate the trafficking of proteins into the host cell, a process that is essential for the survival of the parasite. The role of the auxiliary PTEX component PTEX88 remains unclear, as previous attempts to elucidate its function through reverse genetic approaches showed that in contrast to the core components PTEX150 and HSP101, knockdown of PTEX88 did not give rise to an export phenotype. Here, we have used biochemical approaches to understand how PTEX88 assembles within the translocation machinery. Proteomic analysis of the PTEX88 interactome showed that PTEX88 interacts closely with HSP101 but has a weaker affinity with the other core constituents of PTEX. PTEX88 was also found to associate with other PV-resident proteins, including chaperones and members of the exported protein-interacting complex that interacts with the major virulence factor PfEMP1, the latter contributing to cytoadherence and parasite virulence. Despite being expressed for the duration of the blood-stage life cycle, PTEX88 was only discretely observed at the parasitophorous vacuole membrane during ring stages and could not always be detected in the major high molecular weight complex that contains the other core components of PTEX, suggesting that its interaction with the PTEX complex may be dynamic. Together, these data have enabled the generation of an updated model of PTEX that now includes how PTEX88 assembles within the complex.


Subject(s)
Host-Parasite Interactions/genetics , Malaria, Falciparum/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Animals , Erythrocytes/parasitology , Humans , Life Cycle Stages/genetics , Malaria, Falciparum/parasitology , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Plasmodium falciparum/pathogenicity , Protein Transport/genetics , Proteomics
4.
PLoS One ; 13(3): e0193538, 2018.
Article in English | MEDLINE | ID: mdl-29509772

ABSTRACT

The ability of Plasmodium parasites to egress from their host red blood cell is critical for the amplification of these parasites in the blood. Previous forward chemical genetic approaches have implicated the subtilisin-like protease (SUB1) and the cysteine protease dipeptidyl aminopeptidase 3 (DPAP3) as key players in egress, with the final step of SUB1 maturation thought to be due to the activity of DPAP3. In this study, we have utilized a reverse genetics approach to engineer transgenic Plasmodium falciparum parasites in which dpap3 expression can be conditionally regulated using the glmS ribozyme based RNA-degrading system. We show that DPAP3, which is expressed in schizont stages and merozoites and localizes to organelles distinct from the micronemes, rhoptries and dense granules, is not required for the trafficking of apical proteins or processing of SUB1 substrates, nor for parasite maturation and egress from red blood cells. Thus, our findings argue against a role for DPAP3 in parasite egress and indicate that the phenotypes observed with DPAP3 inhibitors are due to off-target effects.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Erythrocytes/parasitology , Plasmodium falciparum/enzymology , Blotting, Western , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Fluorescent Antibody Technique, Indirect , Gene Expression , Gene Knockdown Techniques , Humans , Microscopy, Immunoelectron , Organelles/enzymology , Organisms, Genetically Modified , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Protein Transport/physiology , Protozoan Proteins/metabolism , Real-Time Polymerase Chain Reaction , Subtilisins/metabolism
5.
Nat Commun ; 8: 16044, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28691708

ABSTRACT

The malaria parasite, Plasmodium falciparum, displays the P. falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of infected red blood cells (RBCs). We here examine the physical organization of PfEMP1 trafficking intermediates in infected RBCs and determine interacting partners using an epitope-tagged minimal construct (PfEMP1B). We show that parasitophorous vacuole (PV)-located PfEMP1B interacts with components of the PTEX (Plasmodium Translocon of EXported proteins) as well as a novel protein complex, EPIC (Exported Protein-Interacting Complex). Within the RBC cytoplasm PfEMP1B interacts with components of the Maurer's clefts and the RBC chaperonin complex. We define the EPIC interactome and, using an inducible knockdown approach, show that depletion of one of its components, the parasitophorous vacuolar protein-1 (PV1), results in altered knob morphology, reduced cell rigidity and decreased binding to CD36. Accordingly, we show that deletion of the Plasmodium berghei homologue of PV1 is associated with attenuation of parasite virulence in vivo.


Subject(s)
Host-Pathogen Interactions , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Animals , Carrier Proteins/metabolism , Cell Adhesion , Female , Gene Knockdown Techniques , Membrane Proteins/metabolism , Mice, Inbred C57BL , Plasmodium berghei/genetics , Plasmodium falciparum/pathogenicity , Protein Transport
6.
Elife ; 62017 03 02.
Article in English | MEDLINE | ID: mdl-28252383

ABSTRACT

Plasmodium falciparum parasites, the causative agents of malaria, modify their host erythrocyte to render them permeable to supplementary nutrient uptake from the plasma and for removal of toxic waste. Here we investigate the contribution of the rhoptry protein RhopH2, in the formation of new permeability pathways (NPPs) in Plasmodium-infected erythrocytes. We show RhopH2 interacts with RhopH1, RhopH3, the erythrocyte cytoskeleton and exported proteins involved in host cell remodeling. Knockdown of RhopH2 expression in cycle one leads to a depletion of essential vitamins and cofactors and decreased de novo synthesis of pyrimidines in cycle two. There is also a significant impact on parasite growth, replication and transition into cycle three. The uptake of solutes that use NPPs to enter erythrocytes is also reduced upon RhopH2 knockdown. These findings provide direct genetic support for the contribution of the RhopH complex in NPP activity and highlight the importance of NPPs to parasite survival.


Subject(s)
Erythrocytes/parasitology , Host-Pathogen Interactions , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Animals , Cytoskeleton/metabolism , Humans , Mice , Pyrimidines/metabolism , Vitamins/metabolism
7.
Int J Parasitol ; 47(2-3): 119-127, 2017 02.
Article in English | MEDLINE | ID: mdl-27368610

ABSTRACT

When in their human hosts, malaria parasites spend most of their time housed within vacuoles inside erythrocytes and hepatocytes. The parasites extensively modify their host cells to obtain nutrients, prevent host cell breakdown and avoid the immune system. To perform these modifications, malaria parasites export hundreds of effector proteins into their host cells and this process is best understood in the most lethal species to infect humans, Plasmodium falciparum. The effector proteins are synthesized within the parasite and following a proteolytic cleavage event in the endoplasmic reticulum and sorting of mature proteins into the correct vesicular trafficking pathway, they are transported to the parasite surface and released into the vacuole. The effector proteins are then unfolded before extrusion across the vacuole membrane by a unique translocon complex called Plasmodium translocon of exported proteins. After gaining access to the erythrocyte cytoplasm many effector proteins continue their journey to the erythrocyte surface by utilising various membranous structures established by the parasite. This complex trafficking pathway and a large number of the effector proteins are unique to Plasmodium parasites. This pathway could, therefore, be developed as new drug targets given that protein export and the functional role of these proteins are essential for parasite survival. This review explores known and potential drug targetable steps in the protein export pathway and strategies for discovering novel drug targets.


Subject(s)
Antimalarials/therapeutic use , Erythrocytes/parasitology , Malaria, Falciparum/pathology , Malaria, Falciparum/parasitology , Plasmodium falciparum/physiology , Animals , Drug Design , Erythrocytes/pathology , Humans , Malaria, Falciparum/drug therapy , Molecular Targeted Therapy
8.
PLoS One ; 11(2): e0149296, 2016.
Article in English | MEDLINE | ID: mdl-26886275

ABSTRACT

Pathogenesis of malaria infections is linked to remodeling of erythrocytes, a process dependent on the trafficking of hundreds of parasite-derived proteins into the host erythrocyte. Recent studies have demonstrated that the Plasmodium translocon of exported proteins (PTEX) serves as the central gateway for trafficking of these proteins, as inducible knockdown of the core PTEX constituents blocked the trafficking of all classes of cargo into the erythrocyte. However, the role of the auxiliary component PTEX88 in protein export remains less clear. Here we have used inducible knockdown technologies in P. falciparum and P. berghei to assess the role of PTEX88 in parasite development and protein export, which reveal that the in vivo growth of PTEX88-deficient parasites is hindered. Interestingly, we were unable to link this observation to a general defect in export of a variety of known parasite proteins, suggesting that PTEX88 functions in a different fashion to the core PTEX components. Strikingly, PTEX88-deficient P. berghei were incapable of causing cerebral malaria despite a robust pro-inflammatory response from the host. These parasites also exhibited a reduced ability to sequester in peripheral tissues and were removed more readily from the circulation by the spleen. In keeping with these findings, PTEX88-deficient P. falciparum-infected erythrocytes displayed reduced binding to the endothelial cell receptor, CD36. This suggests that PTEX88 likely plays a specific direct or indirect role in mediating parasite sequestration rather than making a universal contribution to the trafficking of all exported proteins.


Subject(s)
Gene Knockdown Techniques , Parasites/pathogenicity , Plasmodium berghei/pathogenicity , Plasmodium falciparum/pathogenicity , Protozoan Proteins/metabolism , Animals , CD36 Antigens/metabolism , Cell Adhesion , Female , Glucosamine/metabolism , Immunity , Inflammation/immunology , Inflammation/pathology , Mice, Inbred C57BL , Parasites/growth & development , Protein Binding , Protein Transport , Virulence
9.
Nature ; 511(7511): 587-91, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25043043

ABSTRACT

During the blood stages of malaria, several hundred parasite-encoded proteins are exported beyond the double-membrane barrier that separates the parasite from the host cell cytosol. These proteins have a variety of roles that are essential to virulence or parasite growth. There is keen interest in understanding how proteins are exported and whether common machineries are involved in trafficking the different classes of exported proteins. One potential trafficking machine is a protein complex known as the Plasmodium translocon of exported proteins (PTEX). Although PTEX has been linked to the export of one class of exported proteins, there has been no direct evidence for its role and scope in protein translocation. Here we show, through the generation of two parasite lines defective for essential PTEX components (HSP101 or PTEX150), and analysis of a line lacking the non-essential component TRX2 (ref. 12), greatly reduced trafficking of all classes of exported proteins beyond the double membrane barrier enveloping the parasite. This includes proteins containing the PEXEL motif (RxLxE/Q/D) and PEXEL-negative exported proteins (PNEPs). Moreover, the export of proteins destined for expression on the infected erythrocyte surface, including the major virulence factor PfEMP1 in Plasmodium falciparum, was significantly reduced in PTEX knockdown parasites. PTEX function was also essential for blood-stage growth, because even a modest knockdown of PTEX components had a strong effect on the parasite's capacity to complete the erythrocytic cycle both in vitro and in vivo. Hence, as the only known nexus for protein export in Plasmodium parasites, and an essential enzymic machine, PTEX is a prime drug target.


Subject(s)
Heat-Shock Proteins/metabolism , Malaria/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Animals , Erythrocytes/metabolism , Erythrocytes/parasitology , Heat-Shock Proteins/genetics , Humans , Life Cycle Stages/physiology , Multiprotein Complexes/metabolism , Protein Transport/genetics , Protozoan Proteins/genetics , Vacuoles/metabolism , Vacuoles/parasitology
10.
Mol Microbiol ; 89(6): 1167-86, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23869529

ABSTRACT

Plasmodium parasites remodel their vertebrate host cells by translocating hundreds of proteins across an encasing membrane into the host cell cytosol via a putative export machinery termed PTEX. Previously PTEX150, HSP101 and EXP2 have been shown to be bona fide members of PTEX. Here we validate that PTEX88 and TRX2 are also genuine members of PTEX and provide evidence that expression of PTEX components are also expressed in early gametocytes, mosquito and liver stages, consistent with observations that protein export is not restricted to asexual stages. Although amenable to genetic tagging, HSP101, PTEX150, EXP2 and PTEX88 could not be genetically deleted in Plasmodium berghei, in keeping with the obligatory role this complex is postulated to have in maintaining normal blood-stage growth. In contrast, the putative thioredoxin-like protein TRX2 could be deleted, with knockout parasites displaying reduced grow-rates, both in vivo and in vitro, and reduced capacity to cause severe disease in a cerebral malaria model. Thus, while not essential for parasite survival, TRX2 may help to optimize PTEX activity. Importantly, the generation of TRX2 knockout parasites that display altered phenotypes provides a much-needed tool to dissect PTEX function.


Subject(s)
Parasitemia/parasitology , Plasmodium berghei/enzymology , Plasmodium berghei/pathogenicity , Thioredoxins/metabolism , Virulence Factors/metabolism , Animals , Disease Models, Animal , Gene Deletion , Malaria, Cerebral/parasitology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Survival Analysis , Thioredoxins/genetics , Virulence , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...