Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Foods ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38890996

ABSTRACT

Kombucha is a fermented beverage that originated in China and is spread worldwide today. The infusion of Camellia sinensis leaves is mandatory as the substrate to produce kombucha but alternative plant infusions are expected to increase the opportunities to develop new fermented food products analogous to kombucha, with high technological potential and functional properties. This review gathers information regarding promising alternative substrates to produce kombucha-analogous beverages, focusing on plants available in the Amazonia biome. The data from the literature showed a wide range of alternative substrates in increasing expansion, with 37 new substrates being highlighted, of which ~29% are available in the Amazon region. Regarding the technological production of kombucha-analogous beverages, the following were the most frequent conditions: sucrose was the most used carbon/energy source; the infusions were mostly prepared at 90-100 °C, which allowed increased contents of phenolic compounds in the product; and 14 day-fermentation at 25-28 °C was typical. Furthermore, herbs with promising bioactive compound compositions and high antioxidant and antimicrobial properties are usually preferred. This review also brings up gaps in the literature, such as the lack of consistent information about chemical composition, sensory aspects, biological properties, and market strategies for fermented beverages analogous to kombucha produced with alternative substrates. Therefore, investigations aiming to overcome these gaps may stimulate the upscale of these beverages in reaching wide access to contribute to the modern consumers' quality of life.

2.
Plant Foods Hum Nutr ; 79(1): 12-19, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38191770

ABSTRACT

Native species from the Amazonia are still unknown or underutilized and few information about their chemical and biological properties are available in the literature. Among the underutilized plant species in the Amazonia, Garcinia macrophylla can be seen as a promising source of bioactive compounds with relevant biological properties. The stem bark and leaves were the main investigated plant parts, mainly concerning the antioxidant, antibacterial, cytotoxicity and antidiabetic properties. However, the bioactive compounds and biological properties of the edible fruits were not yet reported. Systematic investigations covering the Amazonia biome, concerning plants and vegetables as strategic resources are of paramount importance for the sustainable development of the forest. Therefore, this review gathered the available information in the literature concerning general aspects, chemical profile and biological properties of G. macrophylla, for the first time, which highlighted that systematic and robust in vitro and in vivo research, are still needed to elucidate the phytochemical profiles and associated relevant biological properties.


Subject(s)
Garcinia , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Garcinia/chemistry , Brazil , Anti-Bacterial Agents/chemistry , Plant Leaves , Phytochemicals/pharmacology , Phytochemicals/chemistry
3.
Heliyon ; 10(2): e24054, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38288015

ABSTRACT

The rapid growth of the world population has increased the demand for new food sources, constituting a major challenge concerning the maximum use of existing food resources. The fruits of Amazonian palm trees have excellent nutritional composition and bioactive compounds. This review highlights four fruits of Amazonian palm trees that are still little explored by the food industry: açai (Euterpe oleracea), pupunha (Bactris gasipaes), buriti (Mauritia flexuosa), and tucumã (Astrocaryum aculeatum). This paper aims to inspire new ideas for researching and developing products for the food industry. It also explores the impacts of Amazonian palm fruits on health, highlighting their role in disease prevention through their nutritional effects.

4.
Food Res Int ; 174(Pt 1): 113575, 2023 12.
Article in English | MEDLINE | ID: mdl-37986445

ABSTRACT

Açai (Euterpe oleracea) is one of the main sustainable extractive crops in the Amazon region, widely consumed by the local population and a significant export product. This review presents the current knowledge regarding nonthermal technologies employed in açai processing. This review aims to discuss and compare the main results attained by the application of HPP, ultrasound, ozone, UV light, cold plasma, and pulsed electric field on microbial inactivation, enzymatic inhibition, and the content of anthocyanin and other bioactive compounds after açai pulp processing. The discussion compares these technologies with pasteurization, the current main technology applied to açai sanitization. This review shows that there are still many gaps to be filled concerning açai processing in thermal and non-thermal technologies. Data analysis allowed the conclusion that pasteurization and HPP are, up to now, the only technologies that enable a 5-log CFU reduction of yeasts, molds, and some bacteria in açai. However, no study has reported the inactivation of Trypanosoma cruzi, which is the major gap found in current knowledge. Other technologies, such as pulsed electric field, cold plasma, and ultrasound, require further development and process intensification studies to be as successful as HPP and pasteurization.


Subject(s)
Plasma Gases , Fruit/chemistry , Antioxidants/analysis , Pasteurization , Anthocyanins/analysis
5.
Molecules ; 28(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37836629

ABSTRACT

Propolis has numerous biological properties and technological potential, but its low solubility in water makes its use quite difficult. With the advent of nanotechnology, better formulations with propolis, such as nanopropolis, can be achieved to improve its properties. Nanopropolis is a natural nanomaterial with several applications, including in the maintenance of food quality. Food safety is a global public health concern since food matrices are highly susceptible to contamination of various natures, leading to food loss and transmission of harmful foodborne illness. Due to their smaller size, propolis nanoparticles are more readily absorbed by the body and have higher antibacterial and antifungal activities than common propolis. This review aims to understand whether using propolis with nanotechnology can help preserve food and prevent foodborne illness. Nanotechnology applied to propolis formulations proved to be effective against pathogenic microorganisms of industrial interest, making it possible to solve problems of outbreaks that can occur through food.


Subject(s)
Foodborne Diseases , Propolis , Humans , Foodborne Diseases/prevention & control , Foodborne Diseases/microbiology , Anti-Bacterial Agents , Antifungal Agents , Food Microbiology
6.
Molecules ; 28(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37764435

ABSTRACT

Açai seeds have been discarded improperly around the Amazonia region, but they can be seen as promising low-cost substrates for fermentation processes. The structural carbohydrates and physicochemical characterization of açai seeds from the Amazonia were assessed followed by the determination of the optimal hydrolysis conditions using H3PO4 (phosphoric acid) and H2SO4 (sulfuric acid) to obtain a liquor with high contents of simple carbohydrates and low levels of potential microbial inhibitors usually generated during acid hydrolysis of carbohydrates. A central composite rotational design was carried out varying the concentrations of diluted acid (0-5%, w/v), solids (0.1-25%, w/v), and hydrolysis time (9.5-110 min). Acid hydrolysis with H2SO4 was more effective in producing reducing sugars (15.9-103.1 g/L) than H3PO4 (2.9-33.9 g/L) during optimization. The optimal hydrolysis conditions with H2SO4 were 3.5% of acid (w/v), 25% of solids during 70 min at 121 °C, which provided a liquor with 55 g/L of reducing sugars and low levels of microbial inhibitors: acetic acid (1.8 g/L), hydroxymethyl furfural (338 mg/L), and furfural (10 mg/L). Thus, açai seeds were characterized as promising agroindustrial waste with high potential to be used as a low-cost substrate in biotechnological processes, comprising relevant environmental and bioeconomic aspects for the development of the Amazonia.


Subject(s)
Euterpe , Euterpe/chemistry , Hydrolysis , Furaldehyde/analysis , Carbohydrates/chemistry , Seeds/chemistry , Sugars/analysis
7.
Antioxidants (Basel) ; 12(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37237978

ABSTRACT

Eryngium foetidum L. is an edible plant widespread in Amazonian cuisine and its leaves have high levels of promising phenolic compounds for the production of extracts to be used as natural antioxidant additives. In this study, the in vitro scavenging capacity of three freeze-dried extracts of E. foetidum leaves, obtained by ultrasound-assisted extraction using green solvents [water (H2O), ethanol (EtOH), and ethanol/water (EtOH/H2O)], was investigated against the most common reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated in both physiological and food systems. Six phenolic compounds were identified, chlorogenic acid (2198, 1816 and 506 µg/g) being the major compound for EtOH/H2O, H2O, and EtOH extracts, respectively. All E. foetidum extracts were efficient in scavenging all the ROS and RNS (IC50 = 45-1000 µg/mL), especially ROS. The EtOH/H2O extract showed the highest contents of phenolic compounds (5781 µg/g) and showed the highest efficiency in scavenging all the reactive species, with high efficiency for O2•- (IC50 = 45 µg/mL), except for ROO•, for which EtOH extract was the most efficient. Therefore, E. foetidum leaf extracts, especially EtOH/H2O, showed high antioxidant potential to be used as natural antioxidants in food formulations and are promising for nutraceuticals products.

8.
Clin Cosmet Investig Dent ; 15: 63-70, 2023.
Article in English | MEDLINE | ID: mdl-37091917

ABSTRACT

Aim: The study evaluated the influence of tucupi on enamel surface roughness, microhardness, ultramorphology, and mass variation. Materials and Methods: Ninety healthy bovine incisors were divided into three experimental groups, according to the acidic challenge adopted, being: G1- tucupi, G2- cola-based soft drink, G3-distilled water. The enamel properties (surface roughness, microhardness, ultramorphology and mass variation) of all specimens were evaluated at times T0 (before any intervention), T10 (10 days after the proposed treatments), T20 (20 days after the proposed treatments) and T30 (30 days after the proposed treatments). After confirming the normality of the data (Shapiro-Wilk test), a two-way ANOVA (α = 5%) was performed, followed by Sidak post-test, with results described as mean and standard deviation. Results: The roughness means increased for all tested groups, with no statistical difference only in G3 for all evaluated times. Microhardness of all groups showed a significant decrease over the time, with the lowest average observed in G1 in T30. Considering enamel mass variation, the lowest average was in G2 at time T3, with no statistical difference only in G3 (distilled water) over the time. Regarding ultramorphology (scanning electron microscopy - SEM), only groups G1 and G2, that were exposed to acidic challenges, showed disorganization of the enamel surface layer. Conclusion: It was possible to conclude that tucupi has low pH and high titratable total acidity, being able to gradually decrease enamel microhardness, increasing surface roughness and causing loss of dental enamel.

9.
Foods ; 12(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37048271

ABSTRACT

Jambu (Acmella oleracea) is a vegetable used in human food. Drying is an alternative to increase the shelf life of the product. High temperatures can induce the degradation of carotenoids and reduce the health benefits of these compounds. This study investigated the effect of the Jambu leaves' drying temperature on the carotenoid composition. It was performed previously by screening 16 plants from different localities based on the total carotenoid content. The process of drying by convection was carried out at temperatures of 35, 40, 50, and 60 °C in an air circulation oven, at an air velocity of 1.4 m/s-1 and a processing time of ~20 h. The drying data were fitted to six mathematical models and the quantification of the carotenoid retention was determined by HPLC-DAD. The study demonstrates that the carotenoid content among the samples collected from the 16 producers varied by 72% (lower-175 ± 16 µg/g, higher-618 ± 46 µg/g). Among the models, the Page model was found to be the most suitable model to explain the variation of the experimental data. The drying process at 40 °C reduces the Jambu leaves' carotenoid content significantly (p < 0.05) (All-trans-ß-carotene-86 ± 2 µg/g, All-trans-lutein-141 ± 0.2 µg/g) but does not alter the carotenoid profile. The occurrence of similar reduction behavior was observed for the different carotenoids at all the temperatures studied. The drying process at 35 °C was the condition that ensured the highest retention of carotenoids, and also a product classified as a very high source of carotenoids (total carotenoids-748 ± 27 µg/g, vitamin A-17 ± 1 µg RAE/g). Thus, this study concludes that a temperature of 35 °C for 14 h (air velocity-1.4 m/s-1) is the best drying condition for Jambu leaves using a low-cost dryer and as a possibility for the preservation and marketing of this Amazonian raw material.

10.
Heliyon ; 9(4): e14933, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37089291

ABSTRACT

Peach palm (Bactris gasipaes Kunth) is an amazonian fruit in which its peel has been appointed as a carotenoid-rich byproduct with biological properties. For analytical purposes, carotenoids are frequently extracted by non-green (use of toxic organic solvents) and time-consuming methods, which can affect the quality (carotenoid profile) and safety of extracts for direct food applications. We investigated herein the effect of different extraction methods on the individual carotenoid profile of extracts of peach palm peels by HPLC-DAD. Carotenoid extractions were carried out by maceration in mortar with pestle (with acetone or ethanol), magnetic stirring, shaker and ultrasound-assisted extraction (UAE) using ethanol. UAE provided the highest carotenoid contents (67 mg/100 g), followed by maceration with acetone and ethanol (63 and 52 mg/100 g, respectively), while the lowest contents were observed for the magnetic stirring and shaker extractions (44 mg/100 g), being (all-E)-ß-carotene and a Z-isomer of γ-carotene accounted 54-73% of the carotenoid composition. HPLC-DAD data showed the same carotenoid profile regardless the extraction method, yet the percentage of Z-isomers of ß-carotene was higher for the shaking (18%), UAE (17%) and magnetic stirring (15%) than for both maceration methods (7 and 8%, with acetone and ethanol, respectively). Thus, the tested extraction methods affected the total carotenoid contents, whereas the chromatographic profile did not change. Furthermore, a carotenoid-rich extract was effectively obtained by using ethanol associated with ultrasound technique (less time-consuming) instead of toxic and non-safe solvents.

11.
Food Res Int ; 167: 112593, 2023 05.
Article in English | MEDLINE | ID: mdl-37087222

ABSTRACT

Plasma is considered by several researchers to be the fourth state of matter. Cold plasma has been highlighted as an alternative to thermal treatments because heat induces less degradation of thermolabile bioactive compounds, such as natural pigments. In this review, we provide a compilation of the current information about the effects of cold plasma on natural pigments, such as the changes caused by plasma to the molecules of chlorophylls, carotenoids, anthocyanins, and betalains. As a result of the literature review, it is noted that can degrade cell membrane and promote damage to pigment storage sites; thereby releasing pigments and increasing their content in the extracellular space. However, the reactive species contained in the cold plasma can cause degradation of the pigments. Cold plasma is a promising technology for extracting pigments; however, case-by-case optimization of the extraction process is required.


Subject(s)
Anthocyanins , Plasma Gases , Anthocyanins/metabolism , Carotenoids/metabolism , Betalains , Chlorophyll
12.
Foods ; 12(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36766098

ABSTRACT

Grumixama (Eugenia brasiliensis Lam.) are red-colored fruits due to the presence of anthocyanins. In this paper, anthocyanin-rich extracts from grumixama were submitted to different temperatures and light irradiations, with the aim of investigating their stabilities. The thermal stability data indicated that a temperature range from 60 to 80 °C was critical to the stability of the anthocyanins of the grumixama extracts, with a temperature quotient value (Q10) of 2.8 and activation energy (Ea) of 52.7 kJ/mol. The anthocyanin-rich extracts of grumixama fruits showed the highest stability during exposure to incandescent irradiation (50 W), followed by fluorescent radiation (10 W). The t1/2 and k were 59.6 h and 0.012 h-1 for incandescent light, and 45.6 h and 0.015 h-1 for fluorescent light. In turn, UV irradiation (25 W) quickly degraded the anthocyanins (t1/2 = 0.18 h and k = 3.74 h-1). Therefore, grumixama fruits, and their derived products, should be handled carefully to avoid high temperature (>50 °C) and UV light exposure in order to protect the anthocyanins from degradation. Furthermore, grumixama fruits showed high contents of anthocyanins that can be explored as natural dyes; for example, by food, pharmaceutical and cosmetic industries. In addition, the results of this study may contribute to the setting of processing conditions and storage conditions for grumixama-derived fruit products.

13.
Foods ; 12(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38231841

ABSTRACT

Tucupi is a broth derived from cassava roots which is produced after the spontaneous fermentation of manipueira (the liquid portion obtained by pressing cassava roots), followed by cooking. This product is widely consumed along with traditional dishes in the Brazilian Amazonia and is already used in different places worldwide. In this study, tucupi obtained from the markets of Belém (Pará, Brazil) and produced using agroindustrial (11 samples) and non-agroindustrial (11 samples) units were investigated to determine their physicochemical characteristics, total and free HCN contents, and free bioactive amine profiles. Most of the samples showed significant variations (p ≤ 0.05) in pH (2.82-4.67), total acidity (0.14-1.36 g lactic acid/100 mL), reducing sugars (up to 2.33 g/100 mL), and total sugars (up to 4.35 g/100 mL). Regarding the amines, four biogenic amines (0.5-4.2 mg/L tyramine, 1.0-23.1 mg/L putrescine, 0.5-66.8 mg/L histamine, and 0.6-2.9 mg/L tryptamine) and one polyamine (0.4-1.7 mg/L spermidine) were identified in the tucupi samples. Even in the tucupi produced using the agroindustrial units, which had quality seals provided by the local regulatory agency, high levels of biogenic amines (4.4-78.2 mg/L) were observed, as well as high dosages of total (8.87-114.66 mg/L) and free (0.80-38.38 mg/L) HCN. These facts highlight the need for better knowledge regarding the product manufacturing process to establish standardization and high-quality conditions for tucupi processing since high contents of biogenic amines and HCN are commonly associated with adverse health effects.

14.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36290636

ABSTRACT

Arrabidaea chica, a medicinal plant found in the Amazon rainforest, is a promising source of bioactive compounds which can be used to inhibit oxidative damage in both food and biological systems. In this study, the in vitro scavenging capacity of characterized extracts of A. chica leaves, obtained with green solvents of different polarities [water, ethanol, and ethanol/water (1:1, v/v)] through ultrasound-assisted extraction, was investigated against reactive oxygen (ROS) and nitrogen (RNS) species, namely superoxide anion radicals (O2•-), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and peroxynitrite anion (ONOO-). The extract obtained with ethanol-water presented about three times more phenolic compound contents (11.8 mg/g) than ethanol and water extracts (3.8 and 3.6 mg/g, respectively), with scutellarein being the major compound (6.76 mg/g). All extracts showed high scavenging efficiency against the tested ROS and RNS, in a concentration-dependent manner with low IC50 values, and the ethanol-water extract was the most effective one. In addition, all the extracts were five times more efficient against ROO• than Trolox. Therefore, the extracts from A. chica leaves exhibited high promising antioxidant potential to be used against oxidative damage in food and physiological systems.

15.
J Food Sci ; 87(9): 4148-4161, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35986623

ABSTRACT

The use of yeasts as starter cultures is a promising alternative to produce fermented cacao with particular characteristics regarding the quality of aromas and physical and chemical characteristics that are accepted by the chocolate market. This study aimed to evaluate the physical and chemical transformations of cocoa beans during fermentation after inoculation with starter cultures of yeast species Pichia manshurica (PF) and Saccharomyces cerevisiae (SF), both previously isolated in cocoa bean fermentations in the Brazilian Amazon, in comparison with a fermentation without the inoculum addition (CF). During the fermentation time, which was carried out on a cocoa farm in Igarapé-Miri (Amazon biome, Pará, Brazil), the contents of phenolic compounds (catechin and epicatechin), sugars (glucose, fructose, and sucrose), acetic acid, and ethanol were monitored by HPLC, and the volatile compounds profiles were assessed by GC-MS. The starter culture of P. manshurica was able to produce fermented cocoa beans with highly desirable characteristics for the production of good quality chocolate: low acidity, a broad variety of aromatic compounds with floral, fruity, and sweet characteristics, in addition to showing high contents of catechin and epicatechin, which are known by their antioxidant properties. Therefore, the use of starter cultures with species of yeasts isolated in the Amazon region, during cocoa fermentation, is an alternative to obtain fermented seeds with high quality favoring the commercial agreements in the chocolate market by cocoa producers. PRACTICAL APPLICATION: The addition of starter cultures was able to produce cocoa beans with good quality. Yeasts species isolated and identified in Amazonian cocoa fermentation can improve the profiles of aromatic compounds. Catechin and epicatechin contents are higher in inoculated cocoa beans fermentations.


Subject(s)
Cacao , Catechin , Antioxidants , Cacao/chemistry , Ecosystem , Ethanol , Fermentation , Fructose , Glucose , Pichia , Saccharomyces cerevisiae , Sucrose , Sugars
16.
Meat Sci ; 192: 108895, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35752060

ABSTRACT

Knowledge on the nutritional and sensory characteristics of wild meat provides a better basis for its use as food, ultimately expanding studies in gastronomy areas and stimulating the development of new products. This review aims to present information on the use of wild meat, with a focus on collared peccaries (Pecari tajacu). The biological characteristics of collared peccaries are discussed, with a focus on the main aspects of their meat. Collared peccary meat has excellent nutritional value due to its high protein levels (18.25%), unsaturated fatty acids (51.6-57.8%), and tenderness, similar to other domestic animals, thereby stimulating the interest of a new product market. Despite the demand for this product, collared peccary meat is scarce and not readily available for commercialization. Further, public policies are needed to encourage the management of this species to add value to the development of a production chain.


Subject(s)
Animals, Wild , Artiodactyla , Animals , Meat
17.
Microorganisms ; 10(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35630286

ABSTRACT

There is scarce information regarding lactic acid bacteria (LAB) and the production of biogenic amines during manipueira fermentation for tucupi. Thus, the objective of this study was to isolate and identify LAB, and to determine their impact on bioactive amine formation. Spontaneous fermentation of manipueira was carried out at laboratory scale and selected LAB colonies were isolated and identified by sequencing techniques and comparison with sequences from a virtual database. Only two LAB species of the genus Lactobacillus were identified during fermentation: Lactobacillus fermentum and Lactobacillus plantarum. L. fermentum was the predominant, whereas L. plantarum was only detected in manipueira prior to fermentation. Spermidine and putrescine were detected throughout fermentation, whereas histamine was produced at the final stage. There was positive correlation between LAB counts and putrescine and histamine levels, suggesting that the identified LAB are responsible for the synthesis of these amines during manipueira fermentation. Genetic assays are needed to verify whether the LAB identified have the genes responsible for decarboxylation of amino acids.

18.
Food Res Int ; 151: 110820, 2022 01.
Article in English | MEDLINE | ID: mdl-34980372

ABSTRACT

The genus Hibiscus includes more than 250 species, and many studies showed that these plants contain bioactive compounds with technological potential to be used in the development of functional foods. However, the instability of these compounds during typical food processing conditions, such as exposure to high temperatures, pH changes and presence of light and oxygen have stimulated the use of encapsulation techniques to increase their stability and applicability. Among the existing Hibiscus species, only H. sabdariffa, H. cannabinus, and H. acetosella have been investigated in encapsulation studies, being spray drying the most common method approached. Considering the high technological potential offered by the incorporation of encapsulated bioactive compounds from plants of the genus Hibiscus in food formulations, this review discusses key information of selected encapsulation techniques, which represents promising alternatives to increase food systems' stability and stimulate the design of new functional foods. Relevant gaps in the literature were also noticed, mainly the lack of systematic studies regarding the composition of bioactive compounds after encapsulation, instead of total determinations, and biological activities in different analytical systems, such as antioxidant, antimicrobial and anti-inflammatory properties as well as bioaccessibility and bioavailability.


Subject(s)
Anti-Infective Agents , Hibiscus , Anti-Inflammatory Agents , Antioxidants , Plant Extracts
19.
J Food Sci ; 86(9): 4045-4059, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34355397

ABSTRACT

Antrocaryon amazonicum fruits are unexploited sources of bioactive compounds found in the Amazonia region of Brazil. In this study, for the first time, the carotenoid and phenolic compound profiles of the pulp and peel of A. amazonicum fruits, from two varieties at two harvest periods, were determined by LC-MS. Additionally, the potential of the peel and pulp extracts to scavenge physiologically relevant reactive oxygen species (ROS) and reactive nitrogen species (RNS) was assessed. The major carotenoids in both parts of the fruits were lutein, accounting for ≈42% of the identified carotenoids in the peel and ≈25% in the pulp, whereas catechin and hydroxybenzoic acid derivatives were the major phenolics in both parts. The peel extract, which presented the highest bioactive compound contents, was more efficient to scavenge ROS than the pulp. The peel extract showed high scavenging efficiency (IC50 ) for singlet oxygen (1 O2 ; 16 µg/ml), hypochlorous acid (HOCl; 20 µg/ml), peroxynitrite (ONOO- ; 38 µg/ml), and superoxide radical (O2 •- ; 47 µg/ml), whereas the pulp extract exhibited high efficiency for ONOO- (13 µg/ml), followed by HOCl (30 µg/ml), ¹O2 (76 µg/ml), and less efficient for O2 •- (44 µg/ml). Therefore, A. amazonicum fruits can be seen as an expressive source of bioactive compounds with high antioxidant potential to be further investigated to inhibit or delay oxidative processes both in food and physiological systems triggered by ROS and RNS. PRACTICAL APPLICATION: Bioactive compound extracts of Antrocaryon amazonicum fruits have high potential to be exploited for inhibiting or delaying oxidative processes and increase food stability.


Subject(s)
Anacardiaceae , Fruit , Reactive Nitrogen Species , Reactive Oxygen Species , Anacardiaceae/chemistry , Antioxidants/chemistry , Brazil , Fruit/chemistry , Plant Extracts/chemistry , Reactive Nitrogen Species/chemistry , Reactive Oxygen Species/chemistry
20.
Int J Mol Sci ; 22(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34445525

ABSTRACT

Carotenoids are natural lipophilic pigments mainly found in plants, but also found in some animals and can be synthesized by fungi, some bacteria, algae, and aphids. These pigments are used in food industries as natural replacements for artificial colors. Carotenoids are also known for their benefits to human health as antioxidants and some compounds have provitamin A activity. The production of carotenoids by biotechnological approaches might exceed yields obtained by extraction from plants or chemical synthesis. Many microorganisms are carotenoid producers; however, not all are industrially feasible. Therefore, in this review, we provide an overview regarding fungi that are potentially interesting to industry because of their capacity to produce carotenoids in response to stresses on the cultivation medium, focusing on low-cost substrates.


Subject(s)
Antioxidants/metabolism , Biotechnology/methods , Carotenoids/metabolism , Genetic Engineering , Animals , Humans , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...