Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(40): 22097-22114, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37755328

ABSTRACT

The SWY-type aluminosilicate zeolite, STA-30, has been synthesized via different routes to understand its defect chemistry and solid acidity. The synthetic parameters varied were the gel aging, the Al source, and the organic structure directing agent. All syntheses give crystalline materials with similar Si/Al ratios (6-7) that are stable in the activated K,H-form and closely similar by powder X-ray diffraction. However, they exhibit major differences in the crystal morphology and in their intracrystalline porosity and silanol concentrations. The diDABCO-C82+ (1,1'-(octane-1,8-diyl)bis(1,4-diazabicyclo[2.2.2]octan)-1-ium)-templated STA-30 samples (but not those templated by bisquinuclidinium octane, diQuin-C82+) possess hierarchical microporosity, consisting of noncrystallographic extra-large micropores (13 Å) that connect with the characteristic swy and gme cages of the SWY structure. This results in pore volumes up to 30% greater than those measured in activated diQuin-C8_STA-30 as well as higher concentrations of silanols and fewer Brønsted acid sites (BASs). The hierarchical porosity is demonstrated by isopentane adsorption and the FTIR of adsorbed pyridine, which shows that up to 77% of the BASs are accessible (remarkable for a zeolite that has a small-pore crystal structure). A structural model of single can/d6r column vacancies is proposed for the extra-large micropores, which is revealed unambiguously by high-resolution scanning transmission electron microscopy. STA-30 can therefore be prepared as a hierarchically porous zeolite via direct synthesis. The additional noncrystallographic porosity and, subsequently, the amount of SiOHs in the zeolites can be enhanced or strongly reduced by the choice of crystallization conditions.

2.
Chemistry ; 28(56): e202201689, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-35821198

ABSTRACT

High silica zeolite ZK-5 (framework Si/Al=4.8) has been prepared by interzeolite conversion from ultrastable zeolite Y via a co-templating route using alkali metal cations and nitrate anions but without organic structure directing agents. The mechanism, which involves zeolite framework - alkali metal cation - nitrate anion ordering, has been established by a combination of chemical and thermal analyses, Raman spectroscopy, computational modelling, and X-ray powder diffraction. Ammonium exchange gives ZK-5 with occluded ammonium nitrate and subsequent heating gives microporous zeolite ZK-5.

3.
Phys Chem Chem Phys ; 22(26): 14514-14526, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32578644

ABSTRACT

The breathing behaviour of 17O-enriched (Al,Ga)-MIL-53, a terephthalate-based metal-organic framework, has been investigated using a combination of solid-state nuclear magnetic resonance (NMR) spectroscopy, powder X-ray diffraction (PXRD) and first-principles calculations. These reveal that the behaviour observed for as-made, calcined, hydrated and subsequently dehydrated mixed-metal MIL-53 materials differs with composition, but cannot be described as the compositionally weighted average of the breathing behaviour seen for the two end members. Although the form of MIL-53 adopted by the as-made material is independent of metal composition, upon calcination, materials with higher levels of Al adopt an open pore (OP) form, as found for the Al end member, but substitution of Ga results in mixed pore materials, with OP and narrow pore (NP) forms co-existing. Although the Ga end member is prone to decomposition under the calcination conditions used, a low level of Al in the starting synthesis (5%) leads to an OP mixed-metal MOF that is stable to calcination. Upon hydration, all materials almost exclusively adopt a closed pore (CP) structure, with strong hydrogen bonding interactions with water leading to two distinct resonances from the carboxylate oxygens in 17O NMR spectra. When dehydrated, different framework structures are found for the two end members, OP for Al-MIL-53 and NP for Ga-MIL-53, with the proportion of NP MOF seen to increase systematically with the Ga content in mixed-metal materials, in contrast to the forms seen upon initial calcination. 17O NMR spectra of mixed-metal MIL-53 materials show an increased preference for clustering of like cations as the Ga content increases. This is not a result of the small-scale dry gel conversion reactions used for enrichment, as a similar cation distribution and clustering is also observed for (Al0.5,Ga0.5)-MIL-53 synthesised hydrothermally and enriched with 17O via post-synthetic steaming.

SELECTION OF CITATIONS
SEARCH DETAIL
...