Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10814, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734695

ABSTRACT

Chikungunya virus (CHIKV) poses a significant global health threat, re-emerging as a mosquito-transmitted pathogen that caused high fever, rash, and severe arthralgia. In Thailand, a notable CHIKV outbreak in 2019-2020 affected approximately 20,000 cases across 60 provinces, underscoring the need for effective mosquito control protocols. Previous studies have highlighted the role of midgut bacteria in the interaction between mosquito vectors and pathogen infections, demonstrating their ability to protect the insect from invading pathogens. However, research on the midgut bacteria of Aedes (Ae.) aegypti, the primary vector for CHIKV in Thailand remains limited. This study aims to characterize the bacterial communities in laboratory strains of Ae. aegypti, both infected and non-infected with CHIKV. Female mosquitoes from a laboratory strain of Ae. aegypti were exposed to a CHIKV-infected blood meal through membrane feeding, while the control group received a non-infected blood meal. At 7 days post-infection (dpi), mosquito midguts were dissected for 16S rRNA gene sequencing to identify midgut bacteria, and CHIKV presence was confirmed by E1-nested RT-PCR using mosquito carcasses. The study aimed to compare the bacterial communities between CHIKV-infected and non-infected groups. The analysis included 12 midgut bacterial samples, divided into three groups: CHIKV-infected (exposed and infected), non-infected (exposed but not infected), and non-exposed (negative control). Alpha diversity indices and Bray-Curtis dissimilarity matrix revealed significant differences in bacterial profiles among the three groups. The infected group exhibited an increased abundance of bacteria genus Gluconobacter, while Asaia was prevalent in both non-infected and negative control groups. Chryseobacterium was prominent in the negative control group. These findings highlight potential alterations in the distribution and abundance of gut microbiomes in response to CHIKV infection status. This study provides valuable insights into the dynamic relationship between midgut bacteria and CHIKV, underscoring the potential for alterations in bacterial composition depending on infection status. Understanding the relationships between mosquitoes and their microbiota holds promise for developing new methods and tools to enhance existing strategies for disease prevention and control. This research advances our understanding of the circulating bacterial composition, opening possibilities for new approaches in combating mosquito-borne diseases.


Subject(s)
Aedes , Chikungunya virus , Gastrointestinal Microbiome , Mosquito Vectors , Animals , Female , Aedes/microbiology , Aedes/virology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Chikungunya virus/physiology , Mosquito Vectors/microbiology , Mosquito Vectors/virology , RNA, Ribosomal, 16S/genetics , Thailand
2.
Cells ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334619

ABSTRACT

Endogenous double-stranded RNA has emerged as a potent stimulator of innate immunity. Under physiological conditions, endogenous dsRNA is maintained in the cell nucleus or the mitochondria; however, if protective mechanisms are breached, it leaches into the cytoplasm and triggers immune signaling pathways. Ectopic activation of innate immune pathways is associated with various diseases and senescence and can trigger apoptosis. Hereby, the level of cytoplasmic dsRNA is crucial. We have enriched dsRNA from two melanoma cell lines and primary dermal fibroblasts, including a competing probe, and analyzed the dsRNA transcriptome using RNA sequencing. There was a striking difference in read counts between the cell lines and the primary cells, and the effect was confirmed by northern blotting and immunocytochemistry. Both mitochondria (10-20%) and nuclear transcription (80-90%) contributed significantly to the dsRNA transcriptome. The mitochondrial contribution was lower in the cancer cells compared to fibroblasts. The expression of different transposable element families was comparable, suggesting a general up-regulation of transposable element expression rather than stimulation of a specific sub-family. Sequencing of the input control revealed minor differences in dsRNA processing pathways with an upregulation of oligoadenylate synthase and RNP125 that negatively regulates the dsRNA sensors RIG1 and MDA5. Moreover, RT-qPCR, Western blotting, and immunocytochemistry confirmed the relatively minor adaptations to the hugely different dsRNA levels. As a consequence, these transformed cell lines are potentially less tolerant to interventions that increase the formation of endogenous dsRNA.


Subject(s)
DNA Transposable Elements , RNA, Double-Stranded , Cells, Cultured , Immunity, Innate/genetics , Cell Line
3.
Sci Rep ; 13(1): 18470, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891235

ABSTRACT

Zika virus (ZIKV), a mosquito-borne flavivirus, has been continually emerging and re-emerging since 2010, with sporadic cases reported annually in Thailand, peaking at over 1000 confirmed positive cases in 2016. Leveraging high-throughput sequencing technologies, specifically whole genome sequencing (WGS), has facilitated rapid pathogen genome sequencing. In this study, we used multiplex amplicon sequencing on the Illumina Miseq instrument to describe ZIKV WGS. Six ZIKV WGS were derived from three samples of field-caught Culex quinquefasciatus mosquitoes (two males and one female) and three urine samples collected from patients in three different provinces of Thailand. Additionally, successful isolation of a ZIKV isolate occurred from a female Cx. quinquefasciatus. The WGS analysis revealed a correlation between the 2020 outbreak and the acquisition of five amino acid changes in the Asian lineage ZIKV strains from Thailand (2006), Cambodia (2010 and 2019), and the Philippines (2012). These changes, including C-T106A, prM-V1A, E-V473M, NS1-A188V, and NS5-M872V, were identified in all seven WGS, previously linked to significantly higher mortality rates. Furthermore, phylogenetic analysis indicated that the seven ZIKV sequences belonged to the Asian lineage. Notably, the genomic region of the E gene showed the highest nucleotide diversity (0.7-1.3%). This data holds significance in informing the development of molecular tools that enhance our understanding of virus patterns and evolution. Moreover, it may identify targets for improved methods to prevent and control future ZIKV outbreaks.


Subject(s)
Aedes , Culex , Zika Virus Infection , Zika Virus , Male , Animals , Humans , Female , Zika Virus/genetics , Phylogeny , Zika Virus Infection/epidemiology , Thailand/epidemiology , Genetic Variation
4.
Exp Biol Med (Maywood) ; 248(10): 866-873, 2023 05.
Article in English | MEDLINE | ID: mdl-36946423

ABSTRACT

Recent reports revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients can develop bacteremia; however, the circulating bacterial profile is not well studied. Therefore, this study has aimed to investigate circulating bacterial profile in mild (n = 15) and severe (n = 13) SARS-CoV-2-infected patients as well as healthy controls (n = 10), using 16S rDNA (V4) sequencing approach. The alpha diversity indexes and Bray-Curtis dissimilarity matrix revealed that the bacterial profiles between the two conditions are significantly different. Correspondingly, the relative abundance indicates that the predominant bacterial phylum in both conditions was Proteobacteria. At genus level, the dominant bacterial genera in the mild patients belonged to Sphingomonas, Stenotrophomonas, and Achromobacter, while bacterial genera belonging to Enhydrobacter, Comamonas, and Acinetobacter were dominant in the severe patients. Furthermore, Linear discriminant analysis (LDA) Effect Size (LEfSe). revealed that Stenotrophomonas, Delftia, Achromobacter, and Neisseria were enriched in the mild condition, while Agrobacterium, Comamonas, Pseudomonas, Corynebacterium, Alkaliphilus, and Kocuria were enriched in the severe patients. These results revealed a distinct circulating bacterial profile in the mild and severe SARS-CoV-2-infected patients, which may provide an insight for further therapeutic strategy.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , DNA, Ribosomal
5.
Front Immunol ; 13: 940935, 2022.
Article in English | MEDLINE | ID: mdl-35983067

ABSTRACT

Because studies on all fecal organisms (bacteria, fungi, and viruses) in sepsis are rare and bacteriophages during sepsis might have adapted against gut bacteria with possible pathogenicity, cecal ligation and puncture (CLP; a sepsis mouse model) was evaluated. In fecal bacteriome, sepsis increased Bacteroides and Proteobacteria but decreased Firmicutes, while fecal virome demonstrated increased Podoviridae when compared with sham feces. There was no difference in the fungal microbiome (predominant Ascomycota in both sham and CLP mice) and the abundance of all organisms between sepsis and control groups. Interestingly, the transfers of feces from CLP mice worsened sepsis severity when compared with sham fecal transplantation, as evaluated by mortality, renal injury (serum creatinine and histology), liver damage (liver enzyme and histology), spleen apoptosis, serum cytokines, endotoxemia, and bacteremia. In contrast, the transfers of fecal viral particles from sepsis mice, but not from sham mice, attenuated inflammation in CLP sepsis possibly through the decrease in several fecal pathogenic bacteria (such as Proteobacteria, Gammaproteobacteria, and Prevotellaceae) as evaluated by fecal microbiome analysis. Perhaps the isolation of favorable bacteriophages in sepsis feces and increased abundance ex vivo before oral treatment in a high concentration are beneficial.


Subject(s)
Sepsis , Animals , Cecum/injuries , Disease Models, Animal , Feces/microbiology , Ligation , Mice , Sepsis/microbiology
6.
J Fungi (Basel) ; 8(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36012875

ABSTRACT

Cordyceps militaris is an industrially important fungus, which is often used in Asia as traditional medicine. There has been a published genome-scale metabolic model (GSMM) of C. militaris useful for predicting its growth behaviors; however, lipid metabolism, which plays a vital role in cellular functions, remains incomplete in the GSMM of C. militaris. A comprehensive study on C. militaris was thus performed by enhancing GSMM through integrative analysis of metabolic footprint and transcriptome data. Through the enhanced GSMM of C. militaris (called iPC1469), it contained 1469 genes, 1904 metabolic reactions and 1229 metabolites. After model evaluation, in silico growth simulation results agreed well with the experimental data of the fungal growths on different carbon sources. Beyond the model-driven integrative data analysis, interestingly, we found key metabolic responses in alteration of lipid metabolism in C. militaris upon different carbon sources. The sphingoid bases (e.g., sphinganine, sphingosine, and phytosphingosine) and ceramide were statistically significant accumulated in the xylose culture when compared with other cultures; this study suggests that the sphingolipid biosynthetic capability in C. militaris was dependent on the carbon source assimilated for cell growth; this finding provides a comprehensive basis for the sphingolipid biosynthesis in C. militaris that can help to further redesign its metabolic control for medicinal and functional food applications.

7.
Exp Biol Med (Maywood) ; 247(13): 1135-1147, 2022 07.
Article in English | MEDLINE | ID: mdl-35723062

ABSTRACT

Currently, both pathogenic and commensal viruses are continuously being discovered and acknowledged as ubiquitous components of microbial communities. The advancements of systems microbiological approaches have changed the face of virome research. Here, we focus on viral metagenomic approach to study virus community and their interactions with other microbial members as well as their hosts. This review also summarizes challenges, limitations, and benefits of the current virome approaches. Potentially, the studies of virome can be further applied in various biological and clinical fields.


Subject(s)
Microbiota , Viruses , Metagenomics , Virome/genetics , Viruses/genetics
8.
Exp Biol Med (Maywood) ; 247(5): 409-415, 2022 03.
Article in English | MEDLINE | ID: mdl-34775842

ABSTRACT

The upper respiratory tract is inhabited by diverse range of commensal microbiota which plays a role in protecting the mucosal surface from pathogens. Alterations of the bacterial community from respiratory viral infections could increase the susceptibility to secondary infections and disease severities. We compared the upper respiratory bacterial profiles among Thai patients with influenza or COVID-19 by using 16S rDNA high-throughput sequencing based on MiSeq platform. The Chao1 richness was not significantly different among groups, whereas the Shannon diversity of Flu A and Flu B groups were significantly lower than Non-Flu & COVID-19 group. The beta diversity revealed that the microbial communities of influenza (Flu A and Flu B), COVID-19, and Non-Flu & COVID-19 were significantly different; however, the comparison of the community structure was similar between Flu A and Flu B groups. The bacterial classification revealed that Enterobacteriaceae was predominant in influenza patients, while Staphylococcus and Pseudomonas were significantly enriched in the COVID-19 patients. These implied that respiratory viral infections might be related to alteration of upper respiratory bacterial community and susceptibility to secondary bacterial infections. Moreover, the bacteria that observed in Non-Flu & COVID-19 patients had high abundance of Streptococcus, Prevotella, Veillonella, and Fusobacterium. This study provides the basic knowledge for further investigation of the relationship between upper respiratory microbiota and respiratory disease which might be useful for better understanding the mechanism of viral infectious diseases.


Subject(s)
Bacteria/genetics , COVID-19/microbiology , Influenza, Human/microbiology , Microbiota/physiology , Nasopharynx/microbiology , Adolescent , Adult , Humans , Microbiota/genetics , Middle Aged , Retrospective Studies , Young Adult
9.
Genomics Inform ; 20(4): e44, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36617651

ABSTRACT

Brugada syndrome (BS) is an autosomal dominant inheritance cardiac arrhythmia disorder associated with sudden death in young adults. Thailand has the highest prevalence of BS worldwide, and over 60% of patients with BS still have unclear disease etiology. Here, we performeda new viral metagenome analysis pipeline called VIRIN and validated it with whole genome sequencing (WGS) data of HeLa cell lines and hepatocellular carcinoma. Then the VIRIN pipelinewas applied to identify viral integration positions from unmapped WGS data of Thai males, including 100 BS patients (case) and 100 controls. Even though the sample preparation had noviral enrichment step, we can identify several virus genes from our analysis pipeline. The predominance of human endogenous retrovirus K (HERV-K) viruses was found in both cases andcontrols by blastn and blastx analysis. This study is the first report on the full-length HERV-Kassembled genomes in the Thai population. Furthermore, the HERV-K integration breakpointpositions were validated and compared between the case and control datasets. Interestingly,Brugada cases contained HERV-K integration breakpoints at promoters five times more oftenthan controls. Overall, the highlight of this study is the BS-specific HERV-K breakpoint positionsthat were found at the gene coding region "NBPF11" (n = 9), "NBPF12" (n = 8) and longnon-coding RNA (lncRNA) "PCAT14" (n = 4) region. The genes and the lncRNA have been reported to be associated with congenital heart and arterial diseases. These findings provide another aspect of the BS etiology associated with viral genome integrations within the humangenome.

10.
Intensive Care Med Exp ; 8(1): 72, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33284413

ABSTRACT

BACKGROUND: When severe, COVID-19 shares many clinical features with bacterial sepsis. Yet, secondary bacterial infection is uncommon. However, as epithelium is injured and barrier function is lost, bacterial products entering the circulation might contribute to the pathophysiology of COVID-19. METHODS: We studied 19 adults, severely ill patients with COVID-19 infection, who were admitted to King Chulalongkorn Memorial Hospital, Bangkok, Thailand, between 13th March and 17th April 2020. Blood samples on days 1, 3, and 7 of enrollment were analyzed for endotoxin activity assay (EAA), (1 → 3)-ß-D-glucan (BG), and 16S rRNA gene sequencing to determine the circulating bacteriome. RESULTS: Of the 19 patients, 13 were in intensive care and 10 patients received mechanical ventilation. We found 8 patients with high EAA (≥ 0.6) and about half of the patients had high serum BG levels which tended to be higher in later in the illness. Although only 1 patient had a positive blood culture, 18 of 19 patients were positive for 16S rRNA gene amplification. Proteobacteria was the most abundant phylum. The diversity of bacterial genera was decreased overtime. CONCLUSIONS: Bacterial DNA and toxins were discovered in virtually all severely ill COVID-19 pneumonia patients. This raises a previously unrecognized concern for significant contribution of bacterial products in the pathogenesis of this disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...