Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(10): e30871, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38784531

ABSTRACT

Dehiscence is a common complication of corneal transplant surgery involving separating the graft from the host eye. The present article aims to investigate fundamental insights into the mechanical and structural aspects of the graft-host junction (GHJ) of a graft that survived in a patient for 13 years after penetrating keratoplasty (PK). Additionally, it adopts the sutur retention strength (SRS) test procedure defined in ISO:7198-2016 and aims to provide a comprehensive test protocol to study the biomechanics of the GHJ in extracted PK buttons. A 9 mm corneal button with GHJ was extracted from a 46-year-old patient who underwent PK 13 years back. The strength of the GHJ was quantified using the SRS test. Corresponding control results were obtained from the SRS tests of a corneoscleral button with no history of any refractive procedure. Birefringence, histological, and scanning electron microscopy (SEM) imaging were used to visualize the microstructural details of the GHJ. The strength of the GHJ was observed to be ten times lower than the native cornea. Histopathological features, such as fragmented Bowman's layer, and fibrosis with a clear demarcation line between host and graft tissue, were observed at the GHJ, suggesting a weak bond across the GHJ. The low strength of the GHJ in PK indicates the high susceptibility of the GHJ towards wound dehiscence.

2.
Med Eng Phys ; 123: 104076, 2024 01.
Article in English | MEDLINE | ID: mdl-38365329

ABSTRACT

The birefringent nature of the human cornea plays an important role in comprehending its structural behavior in both diseased and surgical conditions. During corneal transplantation, irregular astigmatism is a common post-surgical complication that depends on the characteristics of suturing. Four human cadaver corneas are subjected to an in-vitro model of a typical full-thickness penetrating keratoplasty (PK) procedure using 16 simple interrupted 10-0 vicyrl sutures. The birefringence of these four corneas is analyzed using digital photoelasticity and compared with the control cornea (without PK). It is found that the sutures and their mutual interaction influence the morphology of the peripheral birefringence of the cornea. The findings of the present investigation are pertinent to intraoperative suture management during PK. Results suggest conserving the typical diamond-shaped morphology of peripheral birefringence would ensure uniform distribution of sutures. Therefore, birefringence imaging could be useful in suture management to ensure proper apposition of the graft-host junction, thus minimizing the risk of irregular astigmatism.


Subject(s)
Astigmatism , Keratoplasty, Penetrating , Humans , Keratoplasty, Penetrating/adverse effects , Keratoplasty, Penetrating/methods , Astigmatism/etiology , Astigmatism/surgery , Corneal Topography/adverse effects , Visual Acuity , Suture Techniques/adverse effects , Cornea/surgery , Postoperative Complications , Collagen
3.
Sci Rep ; 13(1): 13876, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620375

ABSTRACT

Fracture toughness of the human cornea is one of the critical parameters in suture-involved corneal surgeries and the development of bioengineered mimetics of the human cornea. The present article systematically studied the fracture characteristics of the human cornea to evaluate its resistance to tear in the opening (Mode-I) and trouser tear mode (Mode-III). Tear experiments reveal the dependency of the fracture behavior on the notch size and its location created in the corneal specimens. The findings indicate lamellar tear and collagen fiber pull-out as a failure mechanism in trouser tear and opening mode tests, respectively. Experimental results have shown a localized variation of tear behavior in trouser tear mode and indicated an increasing resistance to tear from the corneal center to the periphery. This article demonstrated the complications of evaluating fracture toughness in opening mode and showed that the limbus was weaker than the cornea and sclera against tearing. The overall outcomes of the present study help in designing experiments to understand the toughness of the diseased tissues, understanding the effect of the suturing location and donor placement, and creating numerical models to study parameters affecting corneal replacement surgery.


Subject(s)
Fractures, Bone , Lacerations , Humans , Biomedical Engineering , Cornea/surgery , Extracellular Matrix
4.
Bioengineering (Basel) ; 9(1)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35049735

ABSTRACT

Computational modelling of damage and rupture of non-connective and connective soft tissues due to pathological and supra-physiological mechanisms is vital in the fundamental understanding of failures. Recent advancements in soft tissue damage models play an essential role in developing artificial tissues, medical devices/implants, and surgical intervention practices. The current article reviews the recently developed damage models and rupture models that considered the microstructure of the tissues. Earlier review works presented damage and rupture separately, wherein this work reviews both damage and rupture in soft tissues. Wherein the present article provides a detailed review of various models on the damage evolution and tear in soft tissues focusing on key conceptual ideas, advantages, limitations, and challenges. Some key challenges of damage and rupture models are outlined in the article, which helps extend the present damage and rupture models to various soft tissues.

5.
Transl Vis Sci Technol ; 7(3): 19, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29946493

ABSTRACT

PURPOSE: To investigate the mechanism of action and consistency in flow characteristics of the Ahmed glaucoma valve (AGV) under simulated physiological conditions in-vitro and to evaluate whether resistance during priming has any effect on performance of the device. METHODS: Each newly opened AGV device was connected to a digital manometer and was primed with normal saline. The device was then placed in a saline bath and connected to an open manometer, a digital manometer, and an infusion pump. Saline was infused at a rate of 3 µL/min for 24 hours. Digital manometer readings were recorded at 4 Hz. RESULTS: Data obtained from 9 devices are presented as medians (ranges). The priming pressure was 1130 (835, 1625) mm Hg. Pressure versus time curves showed two distinct phases; transient and steady phases. The transient phase peak pressure was 24 (13, 45) mm Hg. In the steady phase, opening and closing pressures were 13 (10, 17) and 7 (4, 9) mm Hg, respectively; the valve leaflets briefly opened every 73.9 (51, 76.6) minutes and the fluctuation of pressure (difference between opening and closing pressures) was 6 (3, 9) mm Hg. The Spearman correlation coefficient between priming and opening and priming and closing pressure was ρ = -0.13 (P = 0.72) and ρ = -0.36 (P = 0.33), respectively. CONCLUSIONS: The device showed functionality like a valve. The resistance during priming did not affect opening and closing pressures of the AGV. This study showed variable in vitro performance of the AGV. TRANSLATIONAL RELEVANCE: These laboratory findings might, at least partly, explain the variability in the clinical outcome of the device.

SELECTION OF CITATIONS
SEARCH DETAIL
...