Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1265: 341257, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37230584

ABSTRACT

Electrochemical DNA sensors can be operated in either static or flow-based detection schemes. In static schemes, manual washing steps are still necessary, resulting in a tedious and time-consuming process. In contrast, in flow-based electrochemical sensors, the current response is collected when the solution flows through the electrode continuously. However, the drawback of such a flow system is the low sensitivity due to the limited time for the interaction between the capturing element and the target. Herein, we propose a novel electrochemical capillary-driven microfluidic DNA sensor to combine the advantages of static and flow-based electrochemical detection systems into a single device by incorporating burst valve technology. The microfluidic device with a two-electrode configuration was applied for the simultaneous detection of two different DNA markers, human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV) cDNA, via the specific interaction between pyrrolidinyl peptide nucleic acids (PNA) probes and the DNA target. The integrated system, while requiring a small sample volume (7 µL for each sample loading port) and less analysis time, achieved good performance in terms of the limits of detection (LOD) (3SDblank/slope) and quantification (LOQ) (10SDblank/slope) at 1.45 nM and 4.79 nM for HIV and 1.20 nM and 3.96 nM for HCV, respectively. The simultaneous detection of HIV-1 and HCV cDNA prepared from human blood samples showed results that are in complete agreement with the RT‒PCR assay. The results qualify this platform as a promising alternative for the analysis of either HIV-1/HCV or coinfection that can be easily adapted for other clinically important nucleic acid-based markers.


Subject(s)
Coinfection , HIV Infections , HIV-1 , Hepatitis C , Humans , Hepacivirus/genetics , Microfluidics , HIV-1/genetics , DNA, Complementary , DNA , Hepatitis C/diagnosis , HIV Infections/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...