Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 106(4): 041803, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21405320

ABSTRACT

We report a measurement of the positive muon lifetime to a precision of 1.0 ppm; it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2×10(12) decays. Two different stopping target configurations were employed in independent data-taking periods. The combined results give τ(µ(+)) (MuLan)=2 196 980.3(2.2) ps, more than 15 times as precise as any previous experiment. The muon lifetime gives the most precise value for the Fermi constant: G(F) (MuLan)=1.166 378 8(7)×10(-5) GeV(-2) (0.6 ppm). It is also used to extract the µ(-)p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g(P).

2.
Phys Rev Lett ; 99(3): 032001, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17678280

ABSTRACT

The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau(micro)=2.197 013(24) micros, is in excellent agreement with the previous world average. The new world average tau(micro)=2.197 019(21) micros determines the Fermi constant G(F)=1.166 371(6)x10(-5) GeV-2 (5 ppm). Additionally, the precision measurement of the positive-muon lifetime is needed to determine the nucleon pseudoscalar coupling g(P).

3.
Phys Rev Lett ; 99(3): 032002, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17678281

ABSTRACT

The rate of nuclear muon capture by the proton has been measured using a new technique based on a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas, which is key to avoiding uncertainties from muonic molecule formation. The capture rate from the hyperfine singlet ground state of the microp atom was obtained from the difference between the micro(-) disappearance rate in hydrogen and the world average for the micro(+) decay rate, yielding Lambda(S)=725.0+/-17.4 s(-1), from which the induced pseudoscalar coupling of the nucleon, g(P)(q(2)=-0.88m(2)(micro))=7.3+/-1.1, is extracted.

SELECTION OF CITATIONS
SEARCH DETAIL
...