Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Dev ; 32(17-18): 515-523, 2023 09.
Article in English | MEDLINE | ID: mdl-37345692

ABSTRACT

Cloning cattle using somatic cell nuclear transfer (SCNT) is inefficient. Although the rate of development of SCNT embryos in vitro is similar to that of fertilized embryos, most fail to develop into healthy calves. In this study, we aimed to identify developmentally competent embryos according to blastocyst cell composition and perform transcriptome analysis of single embryos. Transgenic SCNT embryos expressing nuclear-localized HcRed gene at day 7 of development were imaged by confocal microscopy for cell counting and individually transferred to recipient heifers. Pregnancy rates were determined by ultrasonography. Embryos capable of establishing pregnancy by day 35 had an average of 117 ± 6 total cells, whereas embryos with an average of 128 ± 5 cells did not establish pregnancy (P < 0.05). A lesser average number of 41 ± 3 cells in the inner cell mass (ICM) also resulted in pregnancies (<0.05) than a greater number of 48 ± 2 cells in the ICM. Single embryos were then subjected to RNA sequencing for transcriptome analysis. Using weighted gene coexpression network analysis, we identified clusters of genes in which gene expression correlated with the number of total cells or ICM cells. Gene ontology analysis of these clusters revealed enriched biological processes in coenzyme metabolic process, intracellular signaling cascade, and glucose catabolic process, among others. We concluded that SCNT embryos with fewer total and ICM cell numbers resulted in greater pregnancy establishment rates and that these differences are reflected in the transcriptome of such embryos.


Subject(s)
Embryonic Development , Transcriptome , Pregnancy , Animals , Cattle , Female , Transcriptome/genetics , Embryonic Development/genetics , Blastocyst , Nuclear Transfer Techniques/veterinary , Cloning, Organism/methods , Cell Count
2.
Epigenetics ; 12(12): 1048-1056, 2017.
Article in English | MEDLINE | ID: mdl-29160132

ABSTRACT

The substantial epigenetic remodeling that occurs during early stages of mammalian embryonic development likely contributes to reprogramming the parental genomes from a differentiated to a totipotent state and activation of the embryonic genome. Trimethylation of lysine 27 of histone 3 (H3K27me3) is a repressive mark that undergoes global dynamic changes during preimplantation development of several species. To ascertain the role of H3K27me3 in bovine preimplantation development we perturbed the activity of KDM6B, which demethylates H3K27me3. Knockdown of maternal KDM6B mRNA inhibited the reduction in global levels of H3K27me3 from 2-cell to 8-cell embryo stages and compromised development to the blastocyst stage; embryos that developed to the blastocyst stage had fewer inner cell mass (ICM) and trophectoderm (TE) cells. In addition, the transcriptome of KDM6B knockdown embryos was altered at the 8-cell stage and characterized by downregulation of transcripts related to transcriptional regulation, chromatin remodeling, and protein catabolism. Inhibiting the catalytic activity of KDM6B with a specific small molecule inhibitor also prevented the global decrease in H3K27me3 and compromised development to the blastocyst stage. These results indicate that histone demethylation activity, mediated by KDM6B, is required for the global decrease in H3K27me3, correct activation of the embryonic genome, and development to the blastocyst stage in bovine embryos.


Subject(s)
Blastocyst/metabolism , Embryonic Development , Histone Code , Jumonji Domain-Containing Histone Demethylases/metabolism , Animals , Cattle , Cells, Cultured , Female , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/genetics
3.
Biol Reprod ; 97(3): 353-364, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-29025079

ABSTRACT

Early mammalian embryonic transcriptomes are dynamic throughout the process of preimplantation development. Cataloging of primate transcriptomics during early development has been accomplished in humans, but global characterization of transcripts is lacking in the rhesus macaque: a key model for human reproductive processes. We report here the systematic classification of individual macaque transcriptomes using RNA-Seq technology from the germinal vesicle stage oocyte through the blastocyst stage embryo. Major differences in gene expression were found between sequential stages, with the 4- to 8-cell stages showing the highest level of differential gene expression. Analysis of putative transcription factor binding sites also revealed a striking increase in key regulatory factors in 8-cell embryos, indicating a strong likelihood of embryonic genome activation occurring at this stage. Furthermore, clustering analyses of gene co-expression throughout this period resulted in distinct groups of transcripts significantly associated to the different embryo stages assayed. The sequence data provided here along with characterizations of major regulatory transcript groups present a comprehensive atlas of polyadenylated transcripts that serves as a useful resource for comparative studies of preimplantation development in humans and other species.


Subject(s)
Blastocyst/physiology , Gene Expression Profiling/classification , Gene Expression Profiling/methods , Oocytes/physiology , Transcriptome/genetics , Transcriptome/physiology , Animals , Binding Sites , Chromosome Mapping , Cluster Analysis , DNA, Complementary/genetics , Embryonic Development/genetics , Female , Gene Expression Regulation, Developmental/genetics , Macaca mulatta , Pregnancy , RNA/genetics , Transcription Factors/metabolism
4.
Reprod Fertil Dev ; 29(4): 805-814, 2017 Apr.
Article in English | MEDLINE | ID: mdl-26907580

ABSTRACT

The aim of the present study was to evaluate the effects of sperm motility enhancers and different IVF times on cleavage, polyspermy, blastocyst formation, embryo quality and hatching ability. In Experiment 1, sex-sorted X chromosome-bearing Bos taurus spermatozoa were incubated for 30min before 18h fertilisation with hyperactivating factors, namely 10mM caffeine (CA), 5mM theophylline (TH), 10mM caffeine and 5mM theophylline (CA+TH); and untreated spermatozoa (control). In Experiment 2, matured B. taurus oocytes were fertilised using a short (8h) or standard (18h) fertilisation length, comparing two different fertilisation media, namely synthetic oviducal fluid (SOF) fertilisation medium (SOF-FERT) and M199 fertilisation medium (M199-FERT). Cleavage and blastocyst formation rates were significantly higher in the CA+TH group (77% and 27%, respectively) compared with the control group (71% and 21%, respectively). Cleavage rates and blastocyst formation were significantly lower for the shortest fertilisation time (8h) in M199-FERT medium (42% and 12%, respectively). The SOF-FERT medium with an 8h fertilisation time resulted in the highest cleavage rates and blastocyst formation (74% and 29%, respectively). The SOF-FERT medium produced the highest embryo quality (50% Grade 1) and hatching rate (66%). Motility enhancers did not affect polyspermy rates, whereas polyspermy was affected when fertilisation length was extended from 8h (3%) to 18h (9%) and in M199-FERT (14%) compared with SOF-FERT (6%). We conclude that adding the motility enhancers CA and TH to sex sorted spermatozoa and Tyrode's albumin lactate pyruvate (TALP)-Sperm can improve cleavage and embryo development rates without increasing polyspermy. In addition, shortening the oocyte-sperm coincubation time (8h) resulted in similar overall embryo performance rates compared with the prolonged (18h) interval.


Subject(s)
Caffeine/pharmacology , Embryo Culture Techniques/veterinary , Embryonic Development/drug effects , Embryonic Development/physiology , Sperm Motility/drug effects , Spermatozoa/drug effects , Animals , Cattle , Cell Separation , Female , Fertilization in Vitro/drug effects , Fertilization in Vitro/methods , Fertilization in Vitro/veterinary , Flow Cytometry , Male
5.
Reprod Fertil Dev ; 2015 May 13.
Article in English | MEDLINE | ID: mdl-25966894

ABSTRACT

High demand exists among commercial cattle producers for in vitro-derived bovine embryos fertilised with female sex-sorted spermatozoa from high-value breeding stock. The aim of this study was to evaluate three fertilisation media, namely M199, synthetic oviductal fluid (SOF) and Tyrode's albumin-lactate-pyruvate (TALP), on IVF performance using female sex-sorted spermatozoa. In all, 1143, 1220 and 1041 cumulus-oocyte complexes were fertilised in M199, SOF and TALP, respectively. There were significant differences among fertilisation media (P < 0.05) in cleavage rate (M199 = 57%, SOF = 71% and TALP = 72%), blastocyst formation (M199 = 9%, SOF = 20% and TALP = 19%), proportion of Grade 1 blastocysts (M199 = 15%, SOF = 52% and TALP = 51%), proportion of Grade 3 blastocysts (M199 = 58%, SOF = 21% and TALP = 20%) and hatching rates (M199 = 29%, SOF = 60% and TALP = 65%). The inner cell mass (ICM) and trophectoderm (TE) cells of Day 7 blastocysts were also affected by the fertilisation medium. Embryos derived from SOF and TALP fertilisation media had higher numbers of ICM, TE and total cells than those fertilised in M199. In conclusion, fertilisation media affected cleavage rate, as well as subsequent embryo development, quality and hatching ability. SOF and TALP fertilisation media produced significantly more embryos of higher quality than M199.

6.
Mol Reprod Dev ; 82(2): 103-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25560149

ABSTRACT

Molecular changes occurring during mammalian oocyte maturation are partly regulated by cytoplasmic polyadenylation (CP) and affect oocyte quality, yet the extent of CP activity during oocyte maturation remains unknown. Single bovine oocyte RNA sequencing (RNA-Seq) was performed to examine changes in transcript abundance during in vitro oocyte maturation in cattle. Polyadenylated RNA from individual germinal-vesicle and metaphase-II oocytes was amplified and processed for Illumina sequencing, producing approximately 30 million reads per replicate for each sample type. A total of 10,494 genes were found to be expressed, of which 2,455 were differentially expressed (adjusted P < 0.05 and fold change >2) between stages, with 503 and 1,952 genes respectively increasing and decreasing in abundance. Differentially expressed genes with complete 3'-untranslated-region sequence (279 increasing and 918 decreasing in polyadenylated transcript abundance) were examined for the presence, position, and distribution of motifs mediating CP, revealing enrichment (85%) and lack thereof (18%) in up- and down-regulated genes, respectively. Examination of total and polyadenylated RNA abundance by quantitative PCR validated these RNA-Seq findings. The observed increases in polyadenylated transcript abundance within the RNA-Seq data are likely due to CP, providing novel insight into targeted transcripts and resultant differential gene expression profiles that contribute to oocyte maturation.


Subject(s)
Cattle/genetics , Cytoplasm/metabolism , Gene Expression Regulation, Developmental/physiology , Oocytes/physiology , RNA, Messenger/genetics , Animals , Base Sequence , Gene Expression Regulation, Developmental/genetics , Gene Library , Gene Ontology , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Oocytes/metabolism , Polyadenylation
7.
Anim Reprod Sci ; 154: 16-24, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25595334

ABSTRACT

Removal of oocytes from their natural inhibitory follicular environment results in spontaneous resumption of meiosis independent of normal signaling events that occur in vivo. Controlling the onset of meiotic resumption via maintenance of elevated oocyte cAMP levels with adenylyl cyclase (AC) activation and phosphodiesterase (PDE) inhibition, and subsequent hormone stimulation with follicle FSH has been shown to dramatically improve developmental competence of bovine and murine IVM oocytes. This study evaluated the effect of cAMP modulation during IVM of sheep oocytes on meiotic progression and development to blastocyst after parthenogenetic activation. Changes in oocyte cAMP levels were quantified during the first 2h of in vitro maturation in control or cAMP-modulating medium. No significant changes in intra-oocyte cAMP were observed under control conditions, though a slight and transient drop was noticed at 15 min of maturation. Addition of the AC stimulator Forskolin and the PDE inhibitors IBMX altered the cAMP profile, resulting in 10-fold elevation of cAMP by 15 min and sustained >3-fold elevated levels from 30 to 120 min. The effect of cAMP elevation on meiotic resumption was measured by completion of germinal vesicle breakdown. Modulated oocytes were significantly delayed when compared to control media oocytes. Also, progression to MII was significantly delayed in modulated versus control oocytes at 20 and 24h, though no differences persisted to 28 h. Lastly, when control and modulated oocytes were parthenogenetically activated, no differences in blastocyst formation were observed. Thus, while cAMP modulation delayed meiotic progression, it did not improve developmental competence of sheep IVM oocytes.


Subject(s)
Cyclic AMP/metabolism , In Vitro Oocyte Maturation Techniques/veterinary , Meiosis/physiology , Parthenogenesis/physiology , Sheep/physiology , Animals , Blastocyst/physiology , Female , In Vitro Oocyte Maturation Techniques/methods
8.
Biol Reprod ; 90(3): 61, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24478389

ABSTRACT

Formation of the inner cell mass (ICM) and trophectoderm (TE) marks the first differentiation event in mammalian development. These two cell types have completely divergent fates for the remainder of the developmental process. The molecular mechanisms that regulate ICM and TE formation are poorly characterized in horses. The objective of this study was to establish the transcriptome profiles of ICM and TE cells from horse blastocysts using RNA sequencing (RNA-seq). A total of 12 270 genes were found to be expressed in either lineage. Global analysis of the transcriptome profiles by unsupervised clustering indicated that ICM and TE samples presented different gene expression patterns. Statistical analysis indicated that 1662 genes were differentially expressed (adjusted P < 0.05 and fold change > 2) between ICM and TE. Genes known to be specific to the ICM and TE were expressed primarily in their respective tissue. Transcript abundance for genes related to biological processes important for horse blastocyst formation and function is presented and discussed. Collectively, our data and analysis serve as a valuable resource for gene discovery and unraveling the fundamental mechanisms of early horse development.


Subject(s)
Blastocyst Inner Cell Mass/physiology , Blastocyst/physiology , Embryonic Development/genetics , Embryonic Development/physiology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Horses/physiology , RNA/genetics , Transcriptome/genetics , Transcriptome/physiology , Animals , Blastocyst/ultrastructure , Blastocyst Inner Cell Mass/cytology , Chromosome Mapping , Female , Gene Amplification , Multigene Family , Pregnancy , Real-Time Polymerase Chain Reaction
9.
BMC Genomics ; 14: 350, 2013 May 25.
Article in English | MEDLINE | ID: mdl-23705625

ABSTRACT

BACKGROUND: Use of RNA-Seq presents unique benefits in terms of gene expression analysis because of its wide dynamic range and ability to identify functional sequence variants. This technology provides the opportunity to assay the developing embryo, but the paucity of biological material available from individual embryos has made this a challenging prospect. RESULTS: We report here the first application of RNA-Seq for the analysis of individual blastocyst gene expression, SNP detection, and characterization of allele specific expression (ASE). RNA was extracted from single bovine blastocysts (n = 5), amplified, and analyzed using high-throughput sequencing. Approximately 38 million sequencing reads were generated per embryo and 9,489 known bovine genes were found to be expressed, with a high correlation of expression levels between samples (r > 0.97). Transcriptomic data was analyzed to identify SNP in expressed genes, and individual SNP were examined to characterize allele specific expression. Expressed biallelic SNP variants with allelic imbalances were observed in 473 SNP, where one allele represented between 65-95% of a variant's transcripts. CONCLUSIONS: This study represents the first application of RNA-seq technology in single bovine embryos allowing a representation of the embryonic transcriptome and the analysis of transcript sequence variation to describe specific allele expression.


Subject(s)
Blastocyst/metabolism , Sequence Analysis, RNA , Alleles , Animals , Cattle , Female , Male , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Reproducibility of Results , Sex Characteristics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...