Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nanotechnology ; 26(5): 055604, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25590263

ABSTRACT

In this paper we describe the selective growth of ZnO nanorods (NRs) on top of hydrophobic Si NR arrays. The periodic Si NR arrays, prepared through electroless chemical etching and HF treatment, functioned as hydrophobic substrates. Droplets containing ZnO seeds could be positioned on the Si NR arrays, causing the ZnO seeds to deposit selectively upon them, with n-ZnO NR/p-Si NR array heterojunctions ultimately forming after hydrothermal growth of ZnO NRs. Because of compensation for the difference in refractive index between air and the Si substrate, the n-ZnO NR/p-Si NR arrays exhibited excellent absorption ability in the visible range. Devices based on these n-ZnO NR/p-Si NR array heterojunctions displayed not only rectifying behavior but also photovoltaic effects when illuminated with UV light. The low temperature and low cost of this fabrication process suggest that the selective growth of n-ZnO NRs on p-Si NR arrays might allow such structures to have diverse applications in optoelectronics.

2.
Nanoscale Res Lett ; 9(1): 667, 2014.
Article in English | MEDLINE | ID: mdl-25593556

ABSTRACT

In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The crystal structure of a ZnO nanowire revealed that the nanowires were single-crystalline and had grown along the c axis. Further visualization through annular bright field scanning transmission electron microscopy revealed that the hydrothermally grown ZnO nanowires possessed Zn polarity. From photocatalytic activity measurements of the ZnO nanowire (NW) arrays on paper substrate, we extracted rate constants of 0.415, 0.244, 0.195, and 0.08 s(-1) for the degradation of methylene blue at incident angles of 0°, 30°, 60°, and 75°, respectively; that is, the photocatalytic activity of these ZnO nanowire arrays was related to the cosine of the incident angle of the UV light. Accordingly, these materials have promising applications in the design of sterilization systems and light-harvesting devices.

3.
ACS Appl Mater Interfaces ; 6(2): 882-7, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24354279

ABSTRACT

We demonstrate a method to synthesize GaN-ZnGa2O4 core-shell nanowire and ZnGa2O4 nanotube arrays by a low-temperature hydrothermal process using GaN nanowires as templates. Transmission electron microscopy and X-ray photoelectron spectroscopy results show that a ZnGa2O4 shell forms on the surface of GaN nanowires and that the shell thickness is controlled by the time of the hydrothermal process and thus the concentration of Zn ions in the solution. Furthermore, ZnGa2O4 nanotube arrays were obtained by depleting the GaN core from GaN-ZnGa2O4 core-shell nanowire arrays during the reaction and subsequent etching with HCl. The GaN-ZnGa2O4 core-shell nanowires exhibit photoluminescence peaks centered at 2.60 and 2.90 eV attributed to the ZnGa2O4 shell, as well as peaks centered at 3.35 and 3.50 eV corresponding to the GaN core. We also demonstrate the synthesis of GaN-ZnGa2O4 heterojunction nanowires by a selective formation process as a simple route toward development of heterojunction nanodevices for optoelectronic applications.


Subject(s)
Gallium/chemistry , Nanotubes/chemistry , Nanowires/chemistry , Cold Temperature , Particle Size , Silicon/chemistry , Temperature , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL