Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Sci Mater Med ; 26(2): 92, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25649517

ABSTRACT

Low mechanical strengths and inadequate bioactive material-tissue interactions of current synthetic materials limit their clinical applications in bone regeneration. Here, we demonstrate gelatin modified siloxane-calcium silicate (GEMOSIL-CS), a nanocomposite made of gelatinous hydroxyapatite with in situ pozzolanic formation of calcium silicate (CS) interacting among gelatin, silica and Calcium Hydroxide (Ca(OH)2). It is shown the formation of CS matrices, which chemically bonds to the gelatinous hydroxyapatite, provided hygroscopic reinforcement mechanism and promoted both in vitro and in vivo osteogenic properties of GEMOSIL-CS. The formation of CS was identified by Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction. The interfacial bindings within nanocomposites were studied by FTIR and thermogravimetric analysis. Both gelatin and CS have been found critical to the structure integrity and mechanical strengths (93 MPa in compressive strength and 58.9 MPa in biaxial strength). The GEMOSIL-CS was biocompatible and osteoconductive as result of type I collagen secretion and mineralized nodule formation from MC3T3 osteoblasts. SEM and TEM indicated the secretion of collagen fibers and mineral particles as the evidence of mineralization in the early stage of osteogenic differentiation. In vivo bone formation capability was performed by implanting GEMOSIL-CS into rat calvarial defects for 12 weeks and the result showed comparable new bone formation between GEMOSIL-CS group (20%) and the control (20.19%). The major advantage of GEMOSIL-CS composites is in situ self-hardening in ambient or aqueous environment at room temperature providing a simple, fast and cheap method to produce porous scaffolds.


Subject(s)
Bone Substitutes/chemistry , Calcium Compounds/chemistry , Durapatite/chemistry , Nanocomposites/chemistry , Silicates/chemistry , 3T3 Cells , Animals , Biophysical Phenomena , Bone Regeneration , Gelatin/chemistry , Male , Materials Testing , Mice , Microscopy, Electron , Nanocomposites/ultrastructure , Osteogenesis , Rats , Rats, Sprague-Dawley , Siloxanes/chemistry , Skull/injuries , Skull/physiopathology , Skull/surgery , Spectroscopy, Fourier Transform Infrared , Tissue Scaffolds/chemistry , X-Ray Diffraction
2.
ACS Appl Mater Interfaces ; 5(12): 5423-9, 2013 Jun 26.
Article in English | MEDLINE | ID: mdl-23731276

ABSTRACT

Selective growth of silver nanoparticles on ~100 nm thick silica patterns produced by nanoimprint method has been successfully demonstrated using either (1) thermo-induced reduction or (2) room temperature electroless deposition (ELD) without removing the ~25 nm thick residual layer left by nanoimprint process. This selectivity was achieved by silane additive, (3-mercaptopropyl)trimethoxysilane (3-MTS), which was added to the silica matrix to control nucleation and growth of silver. The presence of silver nanoparticles was confirmed by EDX and UV-vis spectrum, and the density, distribution, and size of silver particles were examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Silica film heat-treated between 400 and 600 °C resulted in silver particles of 100-120 nm diameter with a linear density of 2.63-3.36 µm(-1), while the film treated by room temperature ELD produced silver particles of 67 nm diameter with a linear density of 5.65 µm(-1). The selective growth ratio based on particle density on pattern area versus residual layer is 12.92 and 20.31 for high- and room-temperature processes, respectively, whereas the samples without 3-MTS shows low selective growth ratio of 1.22 and 1.04. These results prove that both approaches are fast and effective, suggesting their potential to produce other type of nanoparticle arrays directly on nanoimprinted patterns.

3.
J Mater Chem ; 22(43): 22888-22898, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-23139457

ABSTRACT

Causes of bone deficiency are numerous, but biomimetic alloplastic grafts provide an alternative to repair tissue naturally. Previously, a hydroxyapatite-gelatin modified siloxane (HAp-Gemosil) composite was prepared by cross-linking (N, N'-bis[(3-trimethoxysilyl)propyl]ethylene diamine (enTMOS) around the HAp-Gel nanocomposite particles, to mimic the natural composition and properties of bone. However, the tensile strength remained too low for many orthopedic applications. It was hypothesized that incorporating a polymer chain into the composite could help improve long range interaction. Furthermore, designing this polymer to interact with the enTMOS siloxane cross-linked matrix would provide improved adhesion between the polymer and the ceramic composite, and improve mechanical properties. To this end, copolymers of L-Lactide (LLA), and a novel alkyne derivatized trimethylene carbonate, propargyl carbonate (PC), were synthesized. Incorporation of PC during copolymerization affects properties of copolymers such as molecular weight, T(g), and % PC incorporation. More importantly, PC monomers bear a synthetic handle, allowing copolymers to undergo post-polymerization functionalization with graft monomers to specifically tailor the properties of the final composite. For our investigation, P(LLA-co-PC) copolymers were functionalized by an azido-silane (AS) via copper catalyzed azide-alkyne cycloaddition (CuAAC) through terminal alkyne on PC monomers. The new functionalized polymer, P(LLA-co-PC)(AS) was blended with HAp-Gemosil, with the azido-silane linking the copolymer to the silsesquioxane matrix within the final composite.These HAp-Gemosil/P(LLA-co-PC)(AS) composites were subjected to mechanical and biological testing, and the results were compared with those from the HAp-Gemosil composites. This study revealed that incorporating a cross-linkable polymer served to increase the flexural strength of the composite by 50%, while maintaining the biocompatibility of HAp-Gemosil ceramics.

4.
J Mater Sci Mater Med ; 23(9): 2115-26, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22669282

ABSTRACT

Hydroxyapatite-gelatin modified siloxane (GEMOSIL) nanocomposite was developed by coating, kneading and hardening processes to provide formable scaffolding for alloplastic graft applications. The present study aims to characterize scaffolding formability and mechanical properties of GEMOSIL, and to test the in vitro and in vivo biocompatibility of GEMOSIL. Buffer Solution initiated formable paste followed by the sol-gel reaction led to a final hardened composite. Results showed the adequate coating of aminosilane, 11-19 wt%, affected the cohesiveness of the powders and the final compressive strength (69 MPa) of the composite. TGA and TEM results showed the effective aminosilane coating that preserves hydroxyapatite-gelatin nanocrystals from damage. Both GEMOSIL with and without titania increased the mineralization of preosteoblasts in vitro. Only did titania additives revealed good in vivo bone formation in rat calvarium defects. The scaffolding formability, due to cohesive bonding among GEMOSIL particles, could be further refined to fulfill the complicated scaffold processes.


Subject(s)
Biomimetic Materials/chemical synthesis , Durapatite/chemistry , Gelatin/chemistry , Silanes/pharmacology , Tissue Scaffolds/chemistry , Animals , Biomimetic Materials/chemistry , Bone Cements/chemical synthesis , Bone Cements/chemistry , Bone Cements/pharmacology , Cell Survival/drug effects , Cells, Cultured , Cross-Linking Reagents/pharmacology , Mice , Nanocomposites/chemistry , Osteoblasts/drug effects , Osteoblasts/physiology , Rats , Rats, Sprague-Dawley , Skull/injuries , Skull/pathology , Skull Fractures/therapy
5.
Nanotechnology ; 22(4): 045601, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21157008

ABSTRACT

A aminosilica nanocomposite layer containing a monolayer of gold nanoparticles (d = 18-22 nm) with a well-defined spacing was spontaneously deposited on an unmodified polystyrene surface via a sol-gel reaction when the reduction reaction was carried out under 1:8 molar ratio (gold(III):aminosilane). The amount of aminosilica and spacing between gold nanoparticles were found to be a function of the aminosilane:water molar ratio, which contributes to the plasmonic property of the films with its absorption wavelength ranging between 701 and 548 nm. Furthermore, the nanocomposite film that consists of a monolayer of nanoparticles in aminosilica has also been deposited on the surface of polystyrene beads. This core-shell structure was found capable of storing electrostatic charges and forming a well-separated 2D array.

6.
J Solgel Sci Technol ; 53(2): 459-465, 2010 Feb.
Article in English | MEDLINE | ID: mdl-23833395

ABSTRACT

Aminosilane has been explored as an alternative chemical linker to facilitate the binding and solidification of hydroxyapatite-gelatin nanocomposite at room temperature, which was synthesized using co-precipitation method in the presence of gelatin. This aminosilane treatment was found effective at low concentration (~25 µL/mL) and the solidification and dehydration of hydroxyapatite-gelatin slurry completes within hours depending on the amount of aminosilane. The resulting sample exhibits compressive strength of 133 MPa, about 40% higher than glutaraldehyde treated samples, and shows good biocompatibility based on cell adhesion, proliferation, alkaline phosphate synthesis, and mineralization studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...