Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Exp Mol Med ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294443

ABSTRACT

Ferritin, comprising heavy (FTH1) and light (FTL) chains, is the main iron storage protein, and pancreatic cancer patients exhibit elevated serum ferritin levels. Specifically, higher ferritin levels are correlated with poorer pancreatic ductal adenocarcinoma (PDAC) prognosis; however, the underlying mechanism and metabolic programming of ferritin involved in KRAS-mutant PDAC progression remain unclear. Here, we observed a direct correlation between FTH1 expression and cell viability and clonogenicity in KRAS-mutant PDAC cell lines as well as with in vivo tumor growth through the control of proline metabolism. Our investigation highlights the intricate relationship between FTH1 and pyrroline-5-carboxylate reductase 1 (PYCR1), a crucial mitochondrial enzyme facilitating the glutamate-to-proline conversion, underscoring its impact on proline metabolic imbalance in KRAS-mutant PDAC. This regulation is further reversed by miR-5000-3p, whose dysregulation results in the disruption of proline metabolism, thereby accentuating the progression of KRAS-mutant PDAC. Additionally, our study demonstrated that deferasirox, an oral iron chelator, significantly diminishes cell viability and tumor growth in KRAS-mutant PDAC by targeting FTH1-mediated pathways and altering the PYCR1/PRODH expression ratio. These findings underscore the novel role of FTH1 in proline metabolism and its potential as a target for PDAC therapy development.

2.
J Cell Physiol ; : e31416, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164986

ABSTRACT

Pancreatic cancer has one of the highest fatality rates and the poorest prognosis among all cancer types worldwide. Gemcitabine is a commonly used first-line therapeutic drug for pancreatic cancer; however, the rapid development of resistance to gemcitabine treatment has been observed in numerous patients with pancreatic cancer, and this phenomenon limits the survival benefit of gemcitabine. Adenylosuccinate lyase (ADSL) is a crucial enzyme that serves dual functions in de novo purine biosynthesis, and it has been demonstrated to be associated with clinical aggressiveness, prognosis, and worse patient survival for various cancer types. In the present study, we observed significantly lower ADSL levels in gemcitabine-resistant cells (PANC-1/GemR) than in parental PANC-1 cells, and the knockdown of ADSL significantly increased the gemcitabine resistance of parental PANC-1 cells. We further demonstrated that ADSL repressed the expression of CARD-recruited membrane-associated protein 3 (Carma3), which led to increased gemcitabine resistance, and that nuclear factor erythroid 2-related factor 2 (Nrf2) regulated ADSL expression in parental PANC-1 cells. These results indicate that ADSL is a candidate therapeutic target for pancreatic cancer involving gemcitabine resistance and suggest that the Nrf2/ADSL/Carma3 pathway has therapeutic value for pancreatic cancer with acquired resistance to gemcitabine.

3.
Article in English | MEDLINE | ID: mdl-39091665

ABSTRACT

Background: Diabetes mellitus (DM) is associated with the increased risk of development and the advancement of cholangiocarcinoma (CCA). High glucose levels were previously shown for upregulating interleukin-1ß (IL-1ß) in CCA cells with unclear functions. The present study, thus, aimed to investigate molecular mechanisms linking DM to CCA progression, with IL-1ß hypothesized as a communicating cytokine. Methods: CCA cells were cultured in media with normal (5.6 mM) or high (25 mM) glucose, resembling euglycemia and hyperglycemia, respectively. Expressions of IL-1ß and IL-1 receptor (IL-1R) in CCA tissues from patients with and without DM were examined using immunohistochemistry. Functional analyses of IL-1ß were performed using siRNA and recombinant human IL-1R antagonist (rhIL-1RA), in which Western blots investigated the knockdown efficacy. BALB/c Rag-2-/- Jak3-/- (BRJ) mice were implanted with CCA xenografts to investigate hyperglycemia's effects on CCA growth and the anti-tumor effects of IL-1RA. Results: CCA tumors from patients with hyperglycemia showed significantly higher IL-1ß expression than those from non-DM patients, while IL-1ß was positively correlated with fasting blood glucose (FBG) levels. CCA cells cultured in high glucose showed increased IL-1ß expression, resulting in increased proliferation rates. Suppressing IL-1ß signaling by si-IL-1ß or rhIL-1RA significantly reduced CCA cell proliferation in vitro. Anakinra, a synthetic IL-1RA, also exerted significant anti-tumor effects in vivo and significantly reversed the effects of hyperglycemia-induced growth in CCA xenografts. Conclusions: IL-1ß plays a crucial role in CCA progression in a high-glucose environment. Targeting IL-1ß might, then, help improve therapeutic outcomes of CCA in patients with DM and hyperglycemia.

4.
Sci Rep ; 14(1): 13726, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877189

ABSTRACT

Glucagon-like peptide 1 receptor (GLP-1R) agonist is an emerging anti-diabetic medication whose effects on the risk and progression of cholangiocarcinoma (CCA) are controversial. This study aimed to elucidate the roles of GLP-1R and its agonists on intrahepatic CCA (iCCA) progression. Expressions of GLP-1R in iCCA tissues investigated by immunohistochemistry showed that GLP-1R expressions were significantly associated with poor histological grading (P = 0.027). iCCA cell lines, KKU-055 and KKU-213A, were treated with exendin-4 and liraglutide, GLP-1R agonists, and their effects on proliferation and migration were assessed. Exendin-4 and liraglutide did not affect CCA cell proliferation in vitro, but liraglutide significantly suppressed the migration of CCA cells, partly by inhibiting epithelial-mesenchymal transition. In contrast, liraglutide significantly reduced CCA tumor volumes and weights in xenografted mice (P = 0.046). GLP-1R appeared downregulated when CCA cells were treated with liraglutide in vitro and in vivo. In addition, liraglutide treatment significantly suppressed Akt and STAT3 signaling in CCA cells, by reducing their phosphorylation levels. These results suggested that liraglutide potentially slows down CCA progression, and further clinical investigation would benefit the treatment of CCA with diabetes mellitus.


Subject(s)
Bile Duct Neoplasms , Cell Movement , Cell Proliferation , Cholangiocarcinoma , Epithelial-Mesenchymal Transition , Glucagon-Like Peptide-1 Receptor , Liraglutide , Xenograft Model Antitumor Assays , Liraglutide/pharmacology , Liraglutide/therapeutic use , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Humans , Animals , Cell Line, Tumor , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Mice , Male , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Cell Movement/drug effects , Female , Disease Progression , Middle Aged , Signal Transduction/drug effects , Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , STAT3 Transcription Factor/metabolism , Exenatide/pharmacology , Exenatide/therapeutic use , Mice, Nude , Proto-Oncogene Proteins c-akt/metabolism
5.
Aging (Albany NY) ; 15(22): 12873-12889, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37976135

ABSTRACT

Dacarbazine (DTIC) is the primary first-line treatment for advanced-stage metastatic melanoma; thus, DTIC resistance is poses a major challenge. Therefore, investigating the mechanism underlying DTIC resistance must be investigated. Dicer, a type III cytoplasmic endoribonuclease, plays a pivotal role in the maturation of miRNAs. Aberrant Dicer expression may contribute to tumor progression, clinical aggressiveness, and poor prognosis in various tumors. Dicer inhibition led to a reduction in DTIC sensitivity and an augmentation in stemness in melanoma cells. Clinical analyses indicated a low Dicer expression level as a predictor of poor prognosis factor. Metabolic alterations in tumor cells may interfere with drug response. Adenylosuccinate lyase (ADSL) is a crucial enzyme in the purine metabolism pathway. An imbalance in ADSL may interfere with the therapeutic efficacy of drugs. We discovered that DTIC treatment enhanced ADSL expression and that Dicer silencing significantly reduced ADSL expression in melanoma cells. Furthermore, ADSL overexpression reversed Dicer silencing induced DTIC resistance and cancer stemness. These findings indicate that Dicer-mediated ADSL regulation influences DTIC sensitivity and stemness in melanoma cells.


Subject(s)
Adenylosuccinate Lyase , Melanoma , Humans , Dacarbazine/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism
6.
World J Gastroenterol ; 29(28): 4416-4432, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37576707

ABSTRACT

BACKGROUND: The association between diabetes mellitus (DM) and the increased risk and progression of cholangiocarcinoma (CCA) has been reported with unclear underlying mechanisms. Previous studies showed that γ-aminobutyric acid (GABA) B2 receptor (GABBR2) was upregulated in CCA cells cultured in high glucose (HG) conditions. Roles of GABA receptors in CCA progression have also been studied, but their association with DM and hyperglycemia in CCA remains unclarified. AIM: To investigate the effects of hyperglycemia on GABBR2 expression and the potential use of GABBR2 as a CCA therapeutic target. METHODS: CCA cells, KKU-055 and KKU-213A, were cultured in Dulbecco Modified Eagle's Medium supplemented with 5.6 mmol/L (normal glucose, NG) or 25 mmol/L (HG) glucose and assigned as NG and HG cells, respectively. GABBR2 expression in NG and HG cells was investigated using real-time quantitative polymerase chain reaction and western blot. Expression and localization of GABBR2 in CCA cells were determined using immunocytofluorescence. GABBR2 expression in tumor tissues from CCA patients with and without DM was studied using immunohistochemistry, and the correlations of GABBR2 with the clinicopathological characteristics of patients were analyzed using univariate analysis. Effects of baclofen, a GABA-B receptor agonist, on CCA cell proliferation and clonogenicity were tested using the MTT and clonogenic assays. Phospho-kinases arrays were used to screen the affected signaling pathways after baclofen treatment, and the candidate signaling molecules were validated using the public transcriptomic data and western blot. RESULTS: GABBR2 expression in CCA cells was induced by HG in a dose- and time-dependent manner. CCA tissues from patients with DM and hyperglycemia also showed a significantly higher GABBR2 expression compared with tumor tissues from those with euglycemia (P < 0.01). High GABBR2 expression was significantly associated with a poorer non-papillary histological subtype but with smaller sizes of CCA tumors (P < 0.05). HG cells of both tested CCA cell lines were more sensitive to baclofen treatment. Baclofen significantly suppressed the proliferation and clonogenicity of CCA cells in both NG and HG conditions (P < 0.05). Phospho-kinase arrays suggested glycogen synthase kinase 3 (GSK3), ß-catenin, and the signal transducer and activator of transcription 3 (STAT3) as candidate signaling molecules under the regulation of GABBR2, which were verified in NG and HG cells of the individual CCA cell lines. Cyclin D1 and c-Myc, the common downstream targets of GSK3/ß-catenin and STAT3 involving cell proliferation, were accordingly downregulated after baclofen treatment. CONCLUSION: GABBR2 is upregulated by HG and holds a promising role as a therapeutic target for CCA regardless of the glucose condition.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Diabetes Mellitus , Hyperglycemia , Humans , beta Catenin/metabolism , Glycogen Synthase Kinase 3/pharmacology , Glycogen Synthase Kinase 3/therapeutic use , Baclofen/pharmacology , Baclofen/therapeutic use , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cell Proliferation , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/pathology , Glucose/pharmacology , Glucose/therapeutic use , Cell Line, Tumor
7.
In Vivo ; 37(2): 685-695, 2023.
Article in English | MEDLINE | ID: mdl-36881103

ABSTRACT

BACKGROUND/AIM: Diabetes mellitus (DM) is an established risk for hepatocellular carcinoma (HCC), with unclarified mechanisms. This study investigated the effects of hyperglycemia on O-GlcNacylation in hepatocytes and its associations with hepatocarcinogenesis. MATERIALS AND METHODS: Mouse and human HCC cell lines were used in an in vitro model of hyperglycemia. Western blotting was used to determine the effects of high glucose on O-GlcNacylation in HCC cells. Twenty 4-week-old C3H/HeNJcl mice were randomized into four groups: non-DM control, non-DM plus diethylnitrosamine (DEN), DM, and DM plus DEN. DM was induced using intraperitoneal injection of a single high dose of streptozotocin. DEN was used to induce HCC. All mice were euthanized at week 16 after DM induction, and the liver tissues were histologically examined using hematoxylin and eosin, and immunohistochemistry. RESULTS: High glucose increased O-GlcNacylated proteins in mouse and human HCC cell lines compared with those cultured at normal glucose concentration. Mice with hyperglycemia or DEN treatment had increased O-GlcNacylated proteins in hepatocytes. No gross tumors were evident at the end of the experiment but hepatic morbidity was observed. Mice with hyperglycemia and DEN treatment showed greater histological morbidity in their livers, i.e. increased nuclear size, hepatocellular swelling and sinusoidal dilatation, compared with mice in the DM group or treated with DEN alone. CONCLUSION: Hyperglycemia increased O-GlcNAcylation in both in vitro and animal models. Increased O-GlcNAcylated proteins may be associated with hepatic histological morbidities which then promote HCC development in carcinogen-induced tumorigenesis.


Subject(s)
Carcinoma, Hepatocellular , Hyperglycemia , Liver Neoplasms , Humans , Animals , Mice , Mice, Inbred C3H , Carcinogens/toxicity , Liver Neoplasms/chemically induced , Hepatocytes , Carcinogenesis , Glucose
8.
Biomedicines ; 11(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36672696

ABSTRACT

The betanodavirus B2 protein targets mitochondria and triggers mitochondrion-mediated cell death signaling in lung cancer cells; however, its molecular mechanism remains unknown. In this study, we observed that B2 triggers hydrogen peroxide/Nrf2-involved stress signals in the dynamic regulation of non-small lung cancer cell (NSCLC)-programmed cell death. Here, the B2 protein works as a necrotic inducer that triggers lung cancer death via p53 upregulation and RIP3 expression, suggesting a new perspective on lung cancer therapy. We employed the B2 protein to target A549 lung cancer cells and solid tumors in NOD/SCID mice. Tumors were collected and processed for the hematoxylin and eosin staining of tissue and cell sections, and their sera were used for blood biochemistry analysis. We observed that B2 killed an A549 cell-induced solid tumor in NOD/SCID mice; however, the mutant ΔB2 did not. In NOD/SCID mice, B2 (but not ΔB2) induced both p53/Bax-mediated apoptosis and RIPK3-mediated necroptosis. Finally, immunochemistry analysis showed hydrogen peroxide /p38/Nrf2 stress strongly inhibited the production of tumor markers CD133, Thy1, and napsin, which correlate with migration and invasion in cancer cells. This B2-triggered, ROS/Nrf2-mediated stress signal triggered multiple signals via pathways that killed A549 lung cancer tumor cells in vivo. Our results provide novel insight into lung cancer management and drug therapy.

9.
J Nutr Biochem ; 113: 109228, 2023 03.
Article in English | MEDLINE | ID: mdl-36435291

ABSTRACT

The prevalence of obesity has risen dramatically over recent years, and so has the prevalence of adverse obesity-associated pregnancy outcomes. To combat obesity, the calorie contents of many foods and beverages may be reduced by the use of artificial sweeteners, such as aspartame. However, animal studies suggest that aspartame and its metabolites may exhibit toxicity, and the effects of aspartame on pregnancy are largely unknown. In this study, we treated pregnant mice with aspartame by oral gavage and found that the treatment decreased fasting blood glucose level, whereas systolic blood pressure was elevated. Importantly, the aspartame-treated animals also had low placenta and fetus weights, as well as reduced thickness of the placenta decidua layer. Moreover, aspartame decreased the expression of epithelial-mesenchymal transition proteins and manganese superoxide dismutase (MnSOD) in mouse placentae. In order to clarify the mechanisms though which aspartame affects placenta, we performed experiments on 3A-sub-E trophoblasts. In the cells, aspartame treatments induced cell cycle arrest and reduced the proliferation rate, epithelial-mesenchymal transition, migration activity and invasion activity. We also found that aspartame increased reactive oxygen species (ROS) levels to hyper-activate Akt and downregulate MnSOD expression. Pretreatment with antioxidants or sweet taste receptor inhibitors reversed the effects of aspartame on trophoblast function. We also found that the aspartame metabolite phenylalanine similarly induced ROS production and affected proliferation of trophoblasts. Taken together, our data suggest that aspartame consumption during pregnancy may impact the structure, growth and function of the placenta via sweet taste receptor-mediated stimulation of oxidative stress.


Subject(s)
Aspartame , Taste , Pregnancy , Female , Mice , Animals , Aspartame/adverse effects , Aspartame/chemistry , Reactive Oxygen Species , Taste/physiology , Placenta/metabolism , Obesity
10.
Biomed Pharmacother ; 153: 113520, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076515

ABSTRACT

Oxaliplatin, a third-generation platinum derivative, has become one of the main chemotherapeutic treatments for esophagus, gastric and colorectal cancer; however, it is still unclear the potential effectiveness for pancreatic ductal adenocarcinoma (PDAC) with gemcitabine resistance. Here, we observed that PDAC tumors have low level of organic cation transporter 2 (OCT2, also known as SLC22A2) compared with non-tumor tissues and identified that OCT2 expression is positively correlated with oxaliplatin sensitivity in PDAC cells. Treatment of OCT2 inhibitors or knockdown of OCT2 expression significantly decreased the sensitivity to oxaliplatin in PANC-1 cells. In addition, bisulfite sequencing polymerase chain reaction analysis revealed that higher methylation frequency represses OCT2 expression in gemcitabine-resistant PANC-1 (PANC-1/GR) cells. Moreover, we found that treatment of DNA methyltransferase (DNMT) inhibitors, decitabine or 5-azacytidine recover OCT2 expression and oxaliplatin sensitivity in PANC-1/GR cells, and DNMT1 level has inverse correlation with OCT2 expression in PDAC cells and tumors. Our findings jointly suggest that OCT2 expression is a potential and predictive marker for evaluating oxaliplatin sensitivity and developing alternative treatments for PDAC patients with gemcitabine resistance.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Humans , Organic Cation Transporter 2/metabolism , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
11.
Mol Metab ; 65: 101576, 2022 11.
Article in English | MEDLINE | ID: mdl-35995401

ABSTRACT

OBJECTIVE: Dicer is an enzyme that processes microRNAs (miRNAs) precursors into mature miRNAs, which have been implicated in various aspects of cancer progressions, such as clinical aggressiveness, prognosis, and survival outcomes. We previously showed that high expression of Dicer is associated with gemcitabine (GEM) resistance in pancreatic ductal adenocarcinoma (PDAC); thus, in this study, we aimed to focus on how Dicer is involved in GEM resistance in PDAC, including cancer prognosis, cell proliferation, and metabolic regulation. METHODS: We generated stable shRNA knockdown of Dicer in GEM-resistant PANC-1 (PANC-1 GR) cells and explored cell viability by MTT and clonogenicity assays. Metabolomic profiling was employed to investigate metabolic changes between parental cells, PANC-1, and PANC-1 GR cells, and further implied to compare their sensitivity to the glutaminase inhibitor, CB839, and GEM treatments. To identify putative phosphorylation site involves with Dicer and its effects on GEM resistance in PDAC cells, we further generated phosphomimetic or phosphomutant Dicer at S1016 site and examined the changes in drug sensitivity, metabolic alteration, and miRNA regulation. RESULTS: We observed that high Dicer levels in pancreatic ductal adenocarcinoma cells were positively correlated with advanced pancreatic cancer and acquired resistance to GEM. Metabolomic analysis indicated that PANC-1 GR cells rapidly utilised glutamine as their major fuel and increased levels of glutaminase (GLS): glutamine synthetase (GLUL) ratio which is related to high Dicer expression. In addition, we found that phosphomimetic Dicer S1016E but not phosphomutant Dicer S1016A facilitated miRNA maturation, causing an imbalance in GLS and GLUL and resulting in an increased response to GLS inhibitors. CONCLUSION: Our results suggest that phosphorylation of Dicer on site S1016 affects miRNA biogenesis and glutamine metabolism in GEM-resistant pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal , DEAD-box RNA Helicases , MicroRNAs , Pancreatic Neoplasms , Ribonuclease III , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , DEAD-box RNA Helicases/genetics , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm/genetics , Glutamate-Ammonia Ligase/pharmacology , Glutaminase/genetics , Glutaminase/pharmacology , Glutaminase/therapeutic use , Glutamine , Humans , MicroRNAs/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , RNA, Small Interfering , Ribonuclease III/genetics , Gemcitabine , Pancreatic Neoplasms
12.
Aging (Albany NY) ; 14(16): 6520-6536, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35951366

ABSTRACT

Distant metastasis is the leading cause of death in patients with breast cancer. Despite considerable treatment advances, the clinical outcomes of patients with metastatic breast cancer remain poor. CSCs can self-renew, enhancing cancer progression and metastasis. Dicer, a microRNA (miRNA) processing-related enzyme, is required for miRNA maturation. Imbalanced Dicer expression may be pivotal in cancer progression. However, whether and how Dicer affects the stemness of metastatic breast cancer cells remains unclear. Here, we hypothesized that Dicer regulates the migration, invasion, and stemness of breast cancer cells. We established highly invasive cell lines (MCF-7/I-3 and MDA-MB-231/I-3) and observed that Dicer expression was conspicuously lower in the highly invasive cells than in the parental cells. The silencing of Dicer significantly enhanced the cell migratory/invasive abilities and CSCs properties of the breast cancer cells. Conversely, the overexpression of Dicer in the highly invasive cells reduced their migration, invasion, and CSCs properties. Our bioinformatics analyses demonstrated that low Dicer levels were correlated with increased breast cancer risk. Suppression of Dicer inhibited miR-200b expression, whereas miR-200b suppression recovered Dicer knockdown-induced migration, invasion, and cancer stem cells (CSCs) properties of the breast cancer cells. Thus, our findings reveal that Dicer is a crucial regulator of the migration, invasion, and CSCs properties of breast cancer cells and is significantly associated with poor survival in patients with breast cancer.


Subject(s)
Breast Neoplasms , DEAD-box RNA Helicases , MicroRNAs , Ribonuclease III , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , DEAD-box RNA Helicases/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Ribonuclease III/genetics
13.
Front Immunol ; 13: 883178, 2022.
Article in English | MEDLINE | ID: mdl-36032170

ABSTRACT

Cancer immunotherapy uses the immune system to achieve therapeutic effects; however, its effect is still limited. Therefore, in addition to immune checkpoint-based treatment, the development of other strategies that can inhibit cancer cells from resisting immune cytotoxicity is important. There are currently few studies on the mechanism of tumors using cytoskeletal proteins reorganization to participate in immune escape. In this study, we identified cancer cell lines that were sensitive or resistant to natural killer cells in urothelial and lung cancer using the natural killer cell sensitivity assay. We found that immunoresistant cancer cells avoid natural killer cell-mediated cytotoxicity by upregulation of vimentin and remodeling of actin cytoskeleton. Immunofluorescence staining showed that immune cells promoted the formation of actin filaments at the immune synapse, which was not found in immunosensitive cancer cells. Pretreatment of the actin polymerization inhibitors latrunculin B increased the cytotoxicity of natural killer cells, suggesting that cytoskeleton remodeling plays a role in resisting immune cell attack. In addition, silencing of vimentin with shRNA potentiated the cytotoxicity of natural killer cells. Interestingly, the upregulation and extension of vimentin was found in tumor islands of upper tract urothelial carcinoma infiltrated by natural killer cells. Conversely, tumors without natural killer cell invasion showed less vimentin signal. The expression level of vimentin was highly correlated with natural killer cell infiltration. In summary, we found that when immune cells attack cancer cells, the cancer cells resist immune cytotoxicity through upregulated vimentin and actin reorganization. In addition, this immune resistance mechanism was also found in patient tumors, indicating the possibility that they can be applied to evaluate the immune response in clinical diagnosis.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Actin Cytoskeleton , Actins , Humans , Killer Cells, Natural , Vimentin
14.
Clin Transl Med ; 12(2): e606, 2022 02.
Article in English | MEDLINE | ID: mdl-35170261

ABSTRACT

BACKGROUND: Protein disulfide isomerases a4 (Pdia4) is known to be involved in cancer development. Our previous publication showed that Pdia4 positively promotes cancer development via its inhibition of procaspase-dependent apoptosis in cancer cells. However, nothing is known about its role in the cancer microenvironment. RESULTS: Here, we first found that Pdia4 expression in lung cancer was negatively correlated with patient survival. Next, we investigated the impact of host Pdia4 in stromal cells during cancer development. We showed that Pdia4 was expressed at a low level in stromal cells, and this expression was up-regulated akin to its expression in cancer cells. This up-regulation was stimulated by tumour cell-derived stimuli. Genetics studies in tumour-bearing wild-type and Pdia4-/- mice showed that host Pdia4 promoted lung cancer development in the mice via cancer stroma. This promotion was abolished in Rag1-/- mice which lacked T and B cells. This promotion could be restored once T and B cells were added back to Rag1-/- mice. In addition, host Pdia4 positively regulated the number and immunosuppressive function of stromal cells. Mechanistic studies showed that host Pdia4 positively controlled the Stat3/Vegf pathway in T and B lymphocytes via its stabilization of activated Stat3 in a Thioredoxin-like domain (CGHC)-dependent manner. CONCLUSIONS: These findings identify Pdia4 as a possible target for intervention in cancer stroma, suggesting that targeting Pdia4 in cancer stroma is a promising anti-cancer approach.


Subject(s)
Lung Neoplasms/etiology , Protein Disulfide-Isomerases/metabolism , STAT3 Transcription Factor/metabolism , Stromal Cells/metabolism , Animals , Apoptosis , Mice
15.
Biol Trace Elem Res ; 200(12): 4903-4915, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34993913

ABSTRACT

Growing evidence indicates that metal exposure is associated with metabolic syndrome (MetS); however, mixed results have been reported. The aim of this study was to clarify associations of exposure to essential and non-essential metals with body composition and risks of obesity and MetS. Anthropometry and blood biochemistry of metabolic parameters were obtained from 150 middle-aged Taiwanese adults. Plasma metals were assessed using inductively coupled plasma mass spectrometry, and body compositions were measured by a bioelectrical impedance analysis (BIA). The essential metals of copper (Cu), manganese (Mn), and chromium (Cr) were positively correlated with the body fat mass but inversely correlated with the skeletal muscle mass (all p < 0.05). An adjusted logistic regression showed that Mn [odds ratio (OR) = 1.624 (95% confidence interval 1.072, 2.462), p = 0.02] and, to a lesser extent, Cu [OR = 1.501 (0.985, 2.292), p = 0.059] predicted abdominal obesity, while plasma Cu [OR = 2.211 (1.146, 4.266), p = 0.02] and zinc (Zn) [OR = 2.228 (1.048, 4.736) p = 0.04] predicted MetS. Significant correlations between dyslipidemia and lithium [OR = 1.716 (1.080, 2.726)], Cu [OR = 2.210 (1.415, 3.454)], Mn [OR = 2.200 (1.320, 3.666)], molybdenum [OR = 1.853 (1.160, 2.958)], and Zn [OR = 1.993 (1.186, 3.349)], and between boron [OR = 2.583 (1.137, 5.868)] and hyperglycemia were observed (all p < 0.05). Exposure to essential metals may affect the body composition and metabolic profiles, exacerbating the risk of MetS.


Subject(s)
Metabolic Syndrome , Metals, Heavy , Adult , Body Composition , Boron , Chromium , Copper , Humans , Lithium , Manganese , Metals , Middle Aged , Molybdenum , Obesity , Zinc
16.
Sci Rep ; 11(1): 21242, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711879

ABSTRACT

Pancreatic cancer is one of the most lethal diseases which lack an early diagnostic marker. We investigated whether serum ferritin (SF) reflects risk for pancreatic cancer and potential genes that may contribute ferritin and pancreatic cancer risks. We performed a meta-analysis of relevant studies on SF and pancreatic cancer risk by searching articles in PUBMED and EMBASE published up to 1 March 2020. We also collected serum samples from Taipei Medical University Joint Biobank and compared SF levels in 34 healthy controls and 34 pancreatic cancer patients. An Oncomine database was applied as a platform to explore a series of genes that exhibited strong associations between ferritin and pancreatic cancer. Herein, we show that high levels of SF can indicate risk of pancreatic cancer, suggesting SF as the new tumor marker that may be used to help pancreatic cancer diagnosis. We also found that expressions of iron homeostasis genes (MYC, FXN) and ferroptosis genes (ALOX15, CBS, FDFT1, LPCAT3, RPL8, TP53, TTC35) are significantly altered with pancreatic tumor grades, which may contribute to differential expression of ferritin related to pancreatic cancer prognosis.


Subject(s)
Biomarkers , Ferritins/blood , Pancreatic Neoplasms/blood , Case-Control Studies , Computational Biology/methods , Disease Susceptibility , Ferroptosis/genetics , Gene Expression Profiling , Gene Expression Regulation , Humans , Iron/metabolism , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/etiology , Public Health Surveillance , Risk Factors , Taiwan/epidemiology , Transcriptome
17.
Biology (Basel) ; 10(8)2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34439969

ABSTRACT

Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a critical enzyme involved in ethanol clearance in acetaldehyde metabolism and plays a key role in protecting the liver. The ALDH2*2 mutation causes a significant decrease in acetaldehyde scavenging capacity, leading to the accumulation of acetaldehyde after consuming alcohol. The prevalence of the ALDH2*2 variant is in 45% of Taiwanese individuals. ALDH2 reportedly has protective properties on myocardial damage, stroke, and diabetic retina damage. However, the effects of ALDH2 in the modulation of metabolic syndromes remain unclear. This study evaluates the roles of ALDH2 in a high-fat-diet-induced metabolic syndrome in mice. Male (M) and female (F) wild-type (WT) and ALDH2 knock-in C57BL/6J mice (4-5 weeks old) were fed a high-fat diet for 16 weeks. Results showed that the body and white-adipose-tissue weights were significantly increased in ALDH2-M compared to those in the other groups. We observed markedly elevated serum levels of alanine transaminase and glucose. Oral glucose-tolerance test and homeostasis-model assessment of insulin resistance (HOMA-IR) values were significantly higher in ALDH2-M mice than those in WT-M mice, with no observable differences in female mice. Abundant steatosis and inflammatory cells were observed in ALDH2-M, with significantly decreased expression of hepatic genes IRS2, GLUT4, and PGC-1α compared to that in WT-M. ALDH2 gene mutation also affected the ß-diversity of gut microbiota in ALDH2-M resulting in the decreased abundance of Actinobacteria and an increase in Deferribacteres. Our results suggest that potential changes in gut microbiota may be associated with the defective ALDH2 exacerbation of high-fat-diet-induced liver diseases in male mice. However, female mice were not affected, and sex hormones may be an important factor that requires further investigation.

18.
Molecules ; 26(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923185

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a 5-year survival rate of <8%. Therefore, finding new treatment strategies against PDAC cells is an imperative issue. Betulinic acid (BA), a plant-derived natural compound, has shown great potential to combat cancer owing to its versatile physiological functions. In this study, we observed the impacts of BA on the cell viability and migratory ability of PDAC cell lines, and screened differentially expressed proteins (DEPs) by an LC-MS/MS-based proteomics analysis. Our results showed that BA significantly inhibited the viability and migratory ability of PDAC cells under a relatively low dosage without affecting normal pancreatic cells. Moreover, a functional analysis revealed that BA-induced downregulation of protein clusters that participate in mitochondrial complex 1 activity and oxidative phosphorylation, which was related to decreased expressions of RNA polymerase mitochondrial (POLRMT) and translational activator of cytochrome c oxidase (TACO1), suggesting that the influence on mitochondrial function explains the effect of BA on PDAC cell growth and migration. In addition, BA also dramatically increased Apolipoprotein A1 (APOA1) expression and decreased NLR family CARD domain-containing protein 4 (NLRC4) expression, which may be involved in the dampening of PDAC migration. Notably, altered expression patterns of APOA1 and NLRC4 indicated a favorable clinical prognosis of PDAC. Based on these findings, we identified potential proteins and pathways regulated by BA from a proteomics perspective, which provides a therapeutic window for PDAC.


Subject(s)
Adenocarcinoma/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Pentacyclic Triterpenes/pharmacology , Proteome/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Oxidative Phosphorylation/drug effects , Proteome/drug effects , Proteomics/methods , Tandem Mass Spectrometry , Betulinic Acid
19.
Biomolecules ; 11(3)2021 03 02.
Article in English | MEDLINE | ID: mdl-33801246

ABSTRACT

BACKGROUND: The oncogenic Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation was reported to be the signature genetic event in most cases of pancreatic ductal adenocarcinoma (PDAC). Hepassocin (HPS/FGL1) is involved in regulating lipid metabolism and the progression of several cancer types; however, the underlying mechanism of HPS/FGL1 in the KRAS mutant PDAC cells undergoing eicosapentaenoic acid (EPA) treatment remains unclear. METHODS: We measured HPS/FGL1 protein expressions in a human pancreatic ductal epithelial (HPNE) normal pancreas cell line, a KRAS-wild-type PDAC cell line (BxPC-3), and KRAS-mutant PDAC cell lines (PANC-1, MIA PaCa-2, and SUIT-2) by Western blot methods. HEK293T cells were transiently transfected with corresponding KRAS-expressing plasmids to examine the level of HPS expression with KRAS activation. We knocked-down HPS/FGL1 using lentiviral vectors in SUIT-2 cells and measured the cell viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenicity assays. Furthermore, a lipidomic analysis was performed to profile changes in lipid metabolism after HPS/FGL1 knockdown. RESULTS: We found that the HPS/FGL1 level was significantly upregulated in KRAS-mutated PDAC cells and was involved in KRAS/phosphorylated (p)-signal transduction and activator of transcription 3 (STAT3) signaling, and the knockdown of HPS/FGL1 in SUIT-2 cells decreased cell proliferation through increasing G2/M cell cycle arrest and cyclin B1 expression. In addition, the knockdown of HPS/FGL1 in SUIT-2 cells significantly increased omega-3 polyunsaturated fatty acids (PUFAs) and EPA production but not docosahexaenoic acid (DHA). Moreover, EPA treatment in SUIT-2 cells reduced the expression of de novo lipogenic protein, acetyl coenzyme A carboxylase (ACC)-1, and decreased p-STAT3 and HPS/FGL1 expressions, resulting in the suppression of cell viability. CONCLUSIONS: Results of this study indicate that HPS is highly expressed by KRAS-mutated PDAC cells, and HPS/FGL1 plays a crucial role in altering lipid metabolism and increasing cell growth in pancreatic cancer. EPA supplements could potentially inhibit or reduce ACC-1-involved lipogenesis and HPS/FGL1-mediated cell survival in KRAS-mutated pancreatic cancer cells.


Subject(s)
Eicosapentaenoic Acid/pharmacology , Fibrinogen/metabolism , Mutation/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , STAT3 Transcription Factor/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , HEK293 Cells , Humans , Inhibitory Concentration 50 , Lipids/blood , Phosphorylation/drug effects
20.
J Cell Physiol ; 236(6): 4420-4434, 2021 06.
Article in English | MEDLINE | ID: mdl-33184874

ABSTRACT

Gemcitabine has been a commonly used therapeutic agent for treatment of pancreatic cancer. In the clinic, a growing resistance to gemcitabine has been observed in patients with pancreatic cancer, and investigation of the underlying mechanism of gemcitabine resistance is urgently required. The microRNA (miRNA)-producing enzyme, Dicer, is crucial for the maturation of miRNAs, and is involved in clinical aggressiveness, poor prognosis, and survival outcomes in various cancers, however, the role of Dicer in acquired gemcitabine resistance of pancreatic cancer is still not clear. Here, we found that Dicer expression was significantly increased in gemcitabine-resistant PANC-1 (PANC-1/GEM) cells compared with parental PANC-1 cells and observed a high level of Dicer correlated with increased risk of pancreatic cancer. Suppression of Dicer obviously decreased gemcitabine resistance in PANC-1/GEM cells; consistently, overexpression of Dicer in PANC-1 cells increased gemcitabine resistance. Moreover, we identified that transcriptional factor Sp1 targeted the promoter region of Dicer and found ERK/Sp1 signaling regulated Dicer expression in PANC-1/GEM cells, as well as positively correlated with pancreatic cancer progression and suggest that targeting the ERK/Sp1/Dicer pathway has potential therapeutic value for pancreatic cancer with acquired resistance to gemcitabine.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , DEAD-box RNA Helicases/metabolism , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm , Extracellular Signal-Regulated MAP Kinases/metabolism , Pancreatic Neoplasms/drug therapy , Ribonuclease III/metabolism , Transcriptional Activation , Animals , Carcinoma, Pancreatic Ductal/enzymology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , DEAD-box RNA Helicases/genetics , Deoxycytidine/pharmacology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Mice, Inbred NOD , Mice, SCID , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Ribonuclease III/genetics , Signal Transduction , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Xenograft Model Antitumor Assays , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL