Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polym Chem ; 6(8): 1255-1266, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-26097513

ABSTRACT

Reversible addition-fragmentation chain transfer (RAFT) polymerization was employed to prepare a series of copolymers consisting of 2-hdroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methyl ether methacrylate (FWavg ~ 950 Da) (O950) with variable comonomer compositions and molecular weights for use as polymeric scaffolds. Reactivity ratios for the monomer pair were determined to be 1.37 and 0.290 respectively. To these scaffolds trithiocarbonate-based RAFT chain transfer agents (CTAs) were grafted using carbodiimide chemistry. The resultant graft chain transfer agents (gCTA) were subsequently employed to polymerize dimethylaminoethyl methacrylate (DMAEMA) and (HPMA) between degrees of polymerization (DP) of 25 and 200. Kinetic analysis for the polymerization of DMAEMA targeting a DP of 100 from a 34 arm graft gCTA show linear Mn conversion and pseudo first order rate plots with narrow molecular weight distributions that move toward lower elution volumes with monomer conversion. D values for these polymerizations remain low at around 1.20 at monomer conversions as high as 70 %. pH-responsive endosomalytic brushes capable of spontaneously self-assembling into polymersomes were synthesized and a combination of dynamic light scattering (DLS), cryoTEM, and red blood cell hemolysis were employed to evaluate the aqueous solution properties of the polymeric brush as a function of pH. Successful encapsulation of ceftazidime and pH-dependent drug release properties were confirmed by HPLC. Intracellular antibiotic activity of the drug-loaded polymersomes was confirmed in a macrophage coculture model of infection with B. thailandensis and RAW 264.7 cells.

2.
Polym Chem ; 6(8): 1286-1299, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-26097514

ABSTRACT

Aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization was employed to prepare a series of linear copolymers of N,N-dimethylacrylamide (DMA) and 2-hydroxyethylacrylamide (HEAm) with narrow D values over a molecular weight range spanning three orders of magnitude (103 to 106 Da). Trithiocarbonate-based RAFT chain transfer agents (CTAs) were grafted onto these scaffolds using carbodiimide chemistry catalyzed with DMAP. The resultant graft chain transfer agent (gCTA) was subsequently employed to synthesize polymeric brushes with a number of important vinyl monomer classes including acrylamido, methacrylamido, and methacrylate. Brush polymerization kinetics were evaluated for the aqueous RAFT polymerization of DMA from a 10 arm gCTA. Polymeric brushes containing hydroxyl functionality were further functionalized in order to prepare 2nd generation gCTAs which were subsequently employed to prepare polymers with a brushed-brush architecture with molecular weights in excess of 106 Da. These resultant single particle nanoparticles (SNPs) were employed as drug delivery vehicles for the anthracycline-based drug doxorubicin via copolymerization of DMA with a protected carbazate monomer (bocSMA). Cell-specific targeting functionality was also introduced via copolymerization with a biotin-functional monomer (bioHEMA). Drug release of the hydrazone linked doxorubicin was evaluated as function of pH and serum and chemotherapeutic activity was evaluated in SKOV3 ovarian cancer cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...