Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 8: 282, 2017.
Article in English | MEDLINE | ID: mdl-28303148

ABSTRACT

Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability: how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity.

2.
PLoS One ; 12(1): e0167810, 2017.
Article in English | MEDLINE | ID: mdl-28095423

ABSTRACT

Lyme disease is a major vector-borne bacterial disease in the USA. The disease is caused by Borrelia burgdorferi, and transmitted among hosts and humans, primarily by blacklegged ticks (Ixodes scapularis). The ~25 B. burgdorferi genotypes, based on genotypic variation of their outer surface protein C (ospC), can be phenotypically separated as strains that primarily cause human diseases-human invasive strains (HIS)-or those that rarely do. Additionally, the genotypes are non-randomly associated with host species. The goal of this study was to examine the extent to which phenotypic outcomes of B. burgdorferi could be explained by the host communities fed upon by blacklegged ticks. In 2006 and 2009, we determined the host community composition based on abundance estimates of the vertebrate hosts, and collected host-seeking nymphal ticks in 2007 and 2010 to determine the ospC genotypes within infected ticks. We regressed instances of B. burgdorferi phenotypes on site-specific characteristics of host communities by constructing Bayesian hierarchical models that properly handled missing data. The models provided quantitative support for the relevance of host composition on Lyme disease risk pertaining to B. burgdorferi prevalence (i.e. overall nymphal infection prevalence, or NIPAll) and HIS prevalence among the infected ticks (NIPHIS). In each year, NIPAll and NIPHIS was found to be associated with host relative abundances and diversity. For mice and chipmunks, the association with NIPAll was positive, but tended to be negative with NIPHIS in both years. However, the direction of association between shrew relative abundance with NIPAll or NIPHIS differed across the two years. And, diversity (H') had a negative association with NIPAll, but positive association with NIPHIS in both years. Our analyses highlight that the relationships between the relative abundances of three primary hosts and the community diversity with NIPAll, and NIPHIS, are variable in time and space, and that disease risk inference, based on the role of host community, changes when we examine risk overall or at the phenotypic level. Our discussion focuses on the observed relationships between prevalence and host community characteristics and how they substantiate the ecological understanding of phenotypic Lyme disease risk.


Subject(s)
Borrelia burgdorferi/isolation & purification , Lyme Disease/epidemiology , Rodentia/parasitology , Tick Infestations/epidemiology , Ticks/microbiology , Animals , Humans , Lyme Disease/transmission , Prevalence , Tick Infestations/parasitology , Ticks/classification , United States/epidemiology
3.
Am J Orthod Dentofacial Orthop ; 147(1): 97-113, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25533077

ABSTRACT

Bimaxillary protrusion in a 28-year-old woman was complicated by multiple missing, restoratively compromised, or hopeless teeth. The maxillary right central incisor had a history of avulsion and replantation that subsequently evolved into generalized external root resorption with Class III mobility and severe loss of the supporting periodontium. This complex malocclusion had a discrepancy index of 21, and 8 additional points were scored for the atrophic dental implant site (maxillary right central incisor). The comprehensive treatment plan included extraction of 4 teeth (both maxillary first premolars, the maxillary right central incisor, and the mandibular right first molar), orthodontic closure of all spaces except for the future implant site (maxillary right central incisor), augmentation of the alveolar defect with an autogenous chin-block graft, enhancement of the gingival biotype with a connective tissue graft, and an implant-supported prosthesis. Orthodontists must understand the limitations of bone grafts. Augmented alveolar defects are slow to completely turn over to living bone, so they are usually good sites for implants but respond poorly to orthodontic space closure. However, postsurgical orthodontic treatment is often indicated to optimally finish the esthetic zone before placing the final prosthesis. The latter was effectively performed for this patient, resulting in a total treatment time of about 36 months for comprehensive interdisciplinary care. An excellent functional and esthetic result was achieved.


Subject(s)
Alveolar Ridge Augmentation/methods , Autografts/transplantation , Bone Transplantation/methods , Dental Implants , Gingiva/transplantation , Gingivoplasty/methods , Malocclusion, Angle Class I/therapy , Orthodontics, Corrective/methods , Adult , Alveolar Bone Loss/surgery , Atrophy , Connective Tissue/transplantation , Dental Implantation, Endosseous/instrumentation , Dental Implantation, Endosseous/methods , Dental Prosthesis, Implant-Supported , Female , Humans , Incisor/surgery , Jaw, Edentulous, Partially/therapy , Maxilla/surgery , Orthodontic Anchorage Procedures/instrumentation , Orthodontic Space Closure/instrumentation , Orthodontic Space Closure/methods , Patient Care Planning , Patient Care Team , Root Resorption/surgery , Tooth Extraction
4.
PLoS One ; 8(6): e65697, 2013.
Article in English | MEDLINE | ID: mdl-23785443

ABSTRACT

The ability to quantitatively assess ecological health is of great interest to those tasked with monitoring and conserving ecosystems. For decades, biomonitoring research and policies have relied on multimetric health indices of various forms. Although indices are numbers, many are constructed based on qualitative procedures, thus limiting the quantitative rigor of the practical interpretations of such indices. The statistical modeling approach to construct the latent health factor index (LHFI) was recently developed. With ecological data that otherwise are used to construct conventional multimetric indices, the LHFI framework expresses such data in a rigorous quantitative model, integrating qualitative features of ecosystem health and preconceived ecological relationships among such features. This hierarchical modeling approach allows unified statistical inference of health for observed sites (along with prediction of health for partially observed sites, if desired) and of the relevance of ecological drivers, all accompanied by formal uncertainty statements from a single, integrated analysis. Thus far, the LHFI approach has been demonstrated and validated in a freshwater context. We adapt this approach to modeling estuarine health, and illustrate it on the previously unassessed system in Richibucto in New Brunswick, Canada, where active oyster farming is a potential stressor through its effects on sediment properties. Field data correspond to health metrics that constitute the popular AZTI marine biotic index and the infaunal trophic index, as well as abiotic predictors preconceived to influence biota. Our paper is the first to construct a scientifically sensible model that rigorously identifies the collective explanatory capacity of salinity, distance downstream, channel depth, and silt-clay content-all regarded a priori as qualitatively important abiotic drivers-towards site health in the Richibucto ecosystem. This suggests the potential effectiveness of the LHFI approach for assessing not only freshwater systems but aquatic ecosystems in general.


Subject(s)
Ecosystem , Environmental Health , Estuaries , Models, Statistical , Algorithms , Environment , New Brunswick , Salinity
5.
Proc Natl Acad Sci U S A ; 108(38): 15881-6, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21896716

ABSTRACT

A food web consists of nodes, each consisting of one or more species. The role of each node as predator or prey determines the trophic relations that weave the web. Much effort in trophic food web research is given to understand the connectivity structure, or the nature and degree of dependence among nodes. Social network analysis (SNA) techniques--quantitative methods commonly used in the social sciences to understand network relational structure--have been used for this purpose, although postanalysis effort or biological theory is still required to determine what natural factors contribute to the feeding behavior. Thus, a conventional SNA alone provides limited insight into trophic structure. Here we show that by using novel statistical modeling methodologies to express network links as the random response of within- and internode characteristics (predictors), we gain a much deeper understanding of food web structure and its contributing factors through a unified statistical SNA. We do so for eight empirical food webs: Phylogeny is shown to have nontrivial influence on trophic relations in many webs, and for each web trophic clustering based on feeding activity and on feeding preference can differ substantially. These and other conclusions about network features are purely empirical, based entirely on observed network attributes while accounting for biological information built directly into the model. Thus, statistical SNA techniques, through statistical inference for feeding activity and preference, provide an alternative perspective of trophic clustering to yield comprehensive insight into food web structure.


Subject(s)
Ecosystem , Food Chain , Models, Biological , Models, Statistical , Algorithms , Animals , Bayes Theorem , Genetic Variation , Humans , Phylogeny , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...