Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
ACS Omega ; 4(14): 16217-16225, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31592488

ABSTRACT

A new synthetic method to grow O-deficient rutile TiO2(s) nanorods (NRs) and nanowires (NWs) by a vapor-solid reaction growth method is developed. TiCl4(g) was employed to react with commercially supplied CaTiO3(s) (size 2-4 µm) at 973 K under atmospheric pressure to generate TiO2(s) NRs (diameters 80-120 nm, lengths 1-4 µm). The reaction employing TiCl4(g) and CaO(s) at 973 K also generated CaTiO3(s) (size 4-13 µm) as the intermediate which reacted further with TiCl4(g) to produce NWs (diameters 80-120 nm, lengths 4-15 µm). This is the first report of 1D rutile TiO2(s) nanostructure with such a high aspect ratio. Both of the NRs and the NWs, with compositions TiO1.81 and TiO1.65, respectively, were single crystals grown in the [001] direction. Their morphology was affected by the reaction temperature, the concentration of TiCl4(g), and the particle size of CaTiO3(s). The NRs and the NWs were investigated as anode materials for Li+-ion batteries. At constant current rates 1, 2, and 5 C (1 C = 170 mA g-1) for 100 cycles, the cycling (1.0-3.0 V) performance data of the NRs were 146, 123, and 104 mA h g-1, respectively. On the other hand, the cycling performance data of the NWs were 120, 80, and 52 mA h g-1, respectively. This is attributed to the high Li+ ion diffusion rate (D Li+ ) of the NRs (29.52 × 10-15 cm2 s-1), which exceeds that of the NWs (8.61 × 10-15 cm2 s-1). Although the [001] growth direction of the NR crystals would provide the fastest channels for the diffusion of Li+ ions and enhance the battery capacity, the extremely long channels in the NWs could hamper the diffusion of the Li+ ions. The O-deficiency in the structure would increase the conductivity of the electrode material and improve the stable cycling stability of the batteries also. The long-term cycling test at 2 C for the battery constructed from the NRs retained 121 mA h g-1 after 200 cycles and 99.2 mA h g-1 after 800 cycles. The device has an excellent long-term cycling stability with a loss of only 0.04% per cycle.

2.
ACS Omega ; 4(1): 195-202, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459323

ABSTRACT

An Au/K bicatalyst-assisted chemical vapor deposition process using C2H2(g) to grow high-density carbon nanocoils (CNCs) uniformly on the fibers in carbon fiber cloth substrates three-dimensionally was developed. An as-deposited substrate (2.5 × 1.0 cm2) showed a high electrochemical active surface area (16.53 cm2), suggesting its potential usefulness as the electrode in electrochemical devices. The unique one-dimensional (1D) helical structure of the CNCs shortened the diffusion pathways of the ions in the electrolyte and generated efficient electron conduction routes so that the observed serial resistance R s was low (3.7 Ω). By employing two-electrode systems, a liquid-state supercapacitor (SC) in H2SO4(aq) (1.0 M) and a solid-state SC with a polypropylene (PP) separator immersed in H2SO4(aq) (1.0 M)/polyvinylalcohol were assembled and investigated by using CNC-based electrodes. Both devices exhibited approximate rectangular shape profiles in the cyclic voltammetry measurements at various scan rates. The observations indicated their electric double-layer capacitive behaviors. From their galvanostatic charge/discharge curves, the specific capacitances of the liquid SC and the solid SC were measured to be approximately 137 and 163 F/g, respectively. In addition, the solid-state CNC-based SC possessed excellent energy density (15.3 W h/kg) and power density (510 W/kg). The light weight solid SC (0.1965 g, 2.5 × 1.0 cm2) was bendable up to 150° with most of the properties retained.

3.
ACS Omega ; 3(8): 10225-10232, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459151

ABSTRACT

In this study, we develop a new synthetic method to grow anatase TiO2 crystals composed of truncated octahedral bipyramids (TOBs) with exposed {001} and {101} facets by a vapor-solid reaction growth (VSRG) method. The VSRG method employs TiCl4(g) to react with CaO(s)/Ca(OH)2(s) at 823-1043 K under atmospheric pressure. The O-deficient pale-blue TOB TiO2 crystals display high amount of both {001} and {101} facets. Together, they decompose methylene blue photocatalytically under UV-visible (UV-vis) light irradiation. The most-efficient TOB catalyst VT923 (grown at 923 K, average edge length 400 nm, average thickness 200 nm, and surface area 4.20 m2/g) shows a degradation rate constant k, 0.0527 min-1. This is close to that of the P25 standard 0.0577 min-1. However, the surface area of P25 (46.8 m2/g) is about 12 times that of VT923. The extraordinary performance of VT923 is attributed to the presence of high amount of coexisting {001} and {101} facets to form effective surface heterojunctions. They would separate photogenerated electrons and holes effectively on {101} and {001} surfaces, respectively. For VT923, the {001}/{101} ratio is 0.764, which is close to 1, the highest value observed for all TOB samples grown in this study. The surface heterojunctions prolong the electron-hole separation so that VT923 demonstrates the excellent photocatalytic capability. In addition, residual Cl atoms on the exposed faces are easily removed to show clean TiO surface layers with sufficient amount of O-deficient sites in the current samples.

4.
Dalton Trans ; 46(33): 10859-10866, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28762426

ABSTRACT

Sandia Octahedral Molecular Sieves micro-wires (SOMS MWs) that exhibit ultra-high response to moisture and a short response time can be produced easily in an environmentally friendly mass production process. They are excellent candidate materials for use in humidity sensors. SOMS MWs were synthesized using niobium pentoxide as a precursor in concentrated sodium hydroxide solution. To fabricate humidity-sensing devices, electrophoresis was utilized to align the SOMS MWs on a polyethylene terephthalate (PET) substrate. The degree of alignment of SOMS MWs can be tuned by controlling the electric field during electrophoresis. Both well-aligned SOMS MWs (S-1.00) and randomly distributed SOMS MWs (S-0.00) exhibit maximum sensitivities to humidity (RRH/RDRY) of almost 104 and 107 respectively, and both exhibit short response times (34 and 38 s) and recovery times (7 and 10 s); these MWs outperform metal oxide ceramic-based materials in sensing humidity. Furthermore, the humidity response of S-1.00 exceeds that of S-0.00 by three orders of magnitude, and this result cannot be explained with reference to the Grotthuss mechanism. Therefore, the moisture-induced carriers from trapped electrons contribute significantly to the humidity response of SOMS MWs. In addition, with outstanding humidity sensing-performance under extreme bending conditions and superior durability after being bent hundreds of times, the well-aligned SOMS MW sensor is a favorable candidate for emerging multifunctional electronic-skin.

5.
Nanoscale ; 6(10): 5106-9, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24723207

ABSTRACT

A flexible, porous TiOxNy sheet consisting of numerous conductive fibers was synthesized by nitridation of titanate and further used as an electrochemical electrode. The high surface area and mixed-oxidation state of titanium make TiOxNy sheets to be promising candidates for a good supercapacitor.

6.
ACS Appl Mater Interfaces ; 6(1): 31-5, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24341683

ABSTRACT

Vitality of yeast cells maintained in an aqueous sol-gel solution containing titanium tetraisopropoxide and glucose. The living cells and their metabolites acted as the porogens for a channel-like TiO2 precursor. Further processing of the precursor offered a channel-like meso/macroporous TiO2, a potential anode material for Li-ion battery.


Subject(s)
Gels , Saccharomyces cerevisiae/metabolism , Titanium/isolation & purification , Microscopy, Electron, Scanning
7.
J Mater Chem B ; 1(2): 186-193, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-32260691

ABSTRACT

We demonstrated a facile fabrication of high density Au nanostructures including nanothorns (NTs), nanocorals (NCs), nanoslices (NSs), and nanowires (NWs) which were electrochemically grown on flexible plastic substrates of polyethylene terephthalate (PET). A thrombin-binding aptamer was immobilized on the surfaces of the Au nanostructures to form highly sensitive electrochemical impedance spectroscopic (EIS) biosensors for thrombin recognition. The binding of thrombin to the aptamer sequence was monitored by EIS in the presence of [Fe(CN)6]. The protein (1-50 pM) was detected linearly by the Au nanostructures. Among them, the Au NWs exhibited excellent thrombin detection performances. The biosensor provided high sensitivity, selectivity, and stability due to its high surface area.

8.
ACS Appl Mater Interfaces ; 4(12): 6505-11, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23167627

ABSTRACT

We demonstrated the growth of carbon nanocoils (CNCs) via chemical vapor deposition (CVD) using Au and K metals as the catalysts to assist the thermal decomposition of C(2)H(2). Typical CNCs (wire diameter: 50-80 nm, coil diameter: 110-140 nm, pitch: 100-200 nm, tens of micrometers), identified as amorphous coiled carbon fibers by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were grown at proper combinations of reaction parameters. Au nanoparticles (NPs), identified by energy dispersion X-ray spectroscopy (EDX) and electron diffraction (ED), were located at the tips of the CNCs. The observations suggested that a tip-growth mechanism involving the Au NPs as the nucleation sites was in operation. In the reaction, the liquid-phase K metal assisted the decomposition of C(2)H(2) by lowering the reaction temperature. We propose that acetylide and hydride intermediates were formed in the reaction. Further decomposition of the acetylide intermediates generated solid-phase carbon to grow the CNCs. Effects of varying the reaction conditions on the CNC growth were investigated. On the basis of the results, a Au and K bicatalyst enhanced tip-growth vapor-liquid-solid (VLS) mechanism was proposed to rationalize the CNC formation process. Electron field emission (EFE) characteristics of the CNCs were studied. The best EFE result showed a turn-on field (E(to)) of 3.78 V/µm and a field enhancement factor (ß) of 1852. In addition, the current density (J) was as high as 43 mA/cm(2) at 6.87 V/µm. The data suggest that the CNCs could be employed for field emission device applications.

9.
ACS Appl Mater Interfaces ; 4(10): 5570-5, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23020235

ABSTRACT

In this study, we fabricated Au nanowires (NWs), nanoslices (NSs), and nanocorals (NCs) on flexible polyethylene terephthalate (PET) substrates via direct current electrochemical depositions. Without any surface modification, the Au nanostructures were used as the electrodes for dopamine (DA) sensing. Among them, the Au NW electrode performed exceptionally well. The determined linear range for DA detection was 0.2-600 µM (N = 3) and the sensitivity was 178 nA/µM cm(2), while the detection limit was 26 nM (S/N = 3). After 10 repeated measurements, 95% of the original anodic current values were maintained for the nanostructured electrodes. Sequential additions of citric acid (CA, 1 mM), uric acid (UA, saturated), and ascorbic acid (AA, 1 µM) did not interfere the amperometric response from the addition of DA (0.1 µM).


Subject(s)
Dopamine/analysis , Electrochemical Techniques , Gold/chemistry , Metal Nanoparticles/chemistry , Ascorbic Acid/chemistry , Catalysis , Citric Acid/chemistry , Electrodes , Polyethylene Terephthalates/chemistry , Uric Acid/chemistry
10.
Nanoscale Res Lett ; 7(1): 500, 2012 Sep 05.
Article in English | MEDLINE | ID: mdl-22950781

ABSTRACT

We report on the first electrical characterizations of single-crystalline TiSi nanowires (NWs) synthesized by chemical vapor deposition reactions. By utilizing the focused-ion-beam-induced deposition technique, we have delicately made four-probe contacts onto individual NWs. The NW resistivities have been measured between 2 and 300 K, which reveal overall metallic conduction with small residual resistivity ratios in the NWs. Surprisingly, we find that the effect due to the interference processes between the elastic electron scattering and the electron-phonon scattering largely dominates over the usual Boltzmann transport even at room temperature. Such prominent electron-phonon-impurity interference effect is ascribed to the presence of large amounts of disorder and high Debye temperatures in TiSi NWs.

11.
ACS Appl Mater Interfaces ; 3(10): 3804-12, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21939190

ABSTRACT

Tunnel-structured potassium titanate with a K(3)Ti(8)O(17) phase was synthesized by direct oxidation of titanium powder mixed with KF(aq) in water vapor at 923 K. The reaction conditions were adjusted so that uniform single crystalline potassium titanate nanowires with [010] growth direction (length: 5-30 µm, diameter: 80-100 nm) were obtained. Nitridation of the nanowires by NH(3)(g) at 973-1073 K converted the titanate nanowires into rock-salt structured cubic phase single crystalline titanium oxynitride TiN(x)O(y) nanotubes (x = 0.88, y = 0.12, length = 1-10 µm, diameter = 150-250 nm, wall thickness = 30 - 50 nm) and nanorods (x = 0.5, y = 0.5, length = 1-5 µm, diameter = 100-200 nm) with rough surfaces and [200] growth direction. The overall conversion of the titanate nanowires into the nanotubes and the nanorods can be rationalized by Ostwald ripening mechanism. We fabricated an electrode by adhering TiN(x)O(y) nanotubes (0.2 mg) on a screen-printed carbon electrode (geometric area: 0.2 cm(2)). Electrochemical impedance spectroscopy demonstrated its charge transfer resistance to be 20Ω. The electrochemical surface area of the nanotubes on the electrode was characterized by cyclic voltammetry to be 0.32 cm(2). This property suggests that the TiN(x)O(y) nanostructures can be employed as potential electrode materials for electrochemical applications.

12.
ACS Appl Mater Interfaces ; 3(9): 3280-4, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21797226

ABSTRACT

Urchin-like silver nanowires are prepared by reacting AgNO(3)(aq) with copper metal in the presence of cetyltrimethylammonium chloride and HNO(3)(aq) on a screen-printed carbon electrode at room temperature. The diameters of the nanowires are about 100 nm, and their lengths are up to 10 µm. Using Raman spectroscopy, the detection limit of Rhodamine 6G (R6G) on the urchin-like silver nanowire substrate can be as low as 10(-16) M, while the analytical enhancement factor is about 10(13). Raman mapping images confirm that a single R6G molecule on the substrate can be detected.


Subject(s)
Nanowires/chemistry , Silver/chemistry , Cetrimonium , Cetrimonium Compounds/chemistry , Copper/chemistry , Nanowires/ultrastructure , Rhodamines/chemistry , Silver Nitrate/chemistry , Spectrum Analysis, Raman
13.
ACS Appl Mater Interfaces ; 3(7): 2398-401, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21650184

ABSTRACT

Fabricating a low-cost virtual germanium (Ge) template by epitaxial growth of Ge films on silicon wafer with a Ge(x)Si(1-x) (0 < x < 1) graded buffer layer was demonstrated through a facile chemical vapor deposition method in one step by decomposing a hazardousless GeO(2) powder under hydrogen atmosphere without ultra-high vacuum condition and then depositing in a low-temperature region. X-ray diffraction analysis shows that the Ge film with an epitaxial relationship is along the in-plane direction of Si. The successful growth of epitaxial Ge films on Si substrate demonstrates the feasibility of integrating various functional devices on the Ge/Si substrates.

14.
Nanotechnology ; 21(45): 455601, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-20947940

ABSTRACT

Ge nanostructures were synthesized by reduction of GeO(2) in H(2) atmosphere at various temperatures. Entangled and straight Ge nanowires with oxide shells were grown at high temperatures. Ge nanowires with various numbers of nodules were obtained at low temperatures. Ge nanowires without nodules exhibited remarkable field emission properties with a turn-on field of 4.6 V µm(-1) and field enhancement factor of 1242.

15.
ACS Appl Mater Interfaces ; 2(11): 3285-8, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20964442

ABSTRACT

Free standing and vertically aligned silicon rice-straw- like array emitters were fabricated by modified electroless metal deposition (EMD), using HF-H(2)O(2) as an etching solution to reduce the emitter density and to make the emitter end of the formed silicon rice-straw arrays shaper than those formed by conventional EMD. These silicon rice-straw array emitters can be turned on at E(0) = 4.7 V/µm, yielding an EFE (electron field emission) current density of J(e) = 139 µA/cm(2) in an applied field of 12.8 V/µm. According to a simple simulation, the excellent EFE performance of the silicon rice-straw array emitters originates in not only the favorable distribution of emitter arrays, but also the shape of the emitter apexes. The modified-EMD method is easily scaled up without expensive equipment, so silicon rice-straw array emitters are a promising alternative to silicon-based field emitters.

16.
ACS Appl Mater Interfaces ; 2(10): 2773-80, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20822135

ABSTRACT

A straightforward electrochemical deposition process was developed to grow gold nanostructures, including nanocoral, nanothorn, branched belt, and nanoparticle, on carbon electrodes by reducing HAuCl4 under constant potentials in mixtures containing CTAC and/or NaNO3. Among the nanostructures, the quasi-one-dimensional nanocoral electrode showed the highest surface area. Because of this, it provided excellent electrochemical performances in cyclic voltammetric (CV) studies for kinetic-controlled enzyme-free glucose oxidation reactions. In amperometric studies carried out at 0.200 V in PBS (pH 7.40, 0.100 M), the nanocoral electrode showed the highest anodic current response. It also offered the greatest sensitivity, 22.6 µAmM(-1)cm(-2), an extended linear range, 5.00×10(-2) mM to 3.00×10(1) mM, and a low detection limit, 1.00×10(1) µm among the electrodes investigated in this study. In addition, the glucose oxidation by the nanocoral electrode started at -0.280 V, more negative than the one of using a commercial Au electrode as the working electrode. This is attributed to the presence of exposed Au (110) surfaces on the electrode. The feature was applied to oxidize glucose selectively in the presence of ascorbic acid (AA) and uric acid (UA), common interferences found in physiological analytes. With an applied voltage at -0.100 V, the AA oxidation (started at -0.080 V) can be avoided while the glucose oxidation still provides a significant response.


Subject(s)
Ascorbic Acid/chemistry , Electrochemical Techniques , Glucose/analysis , Gold/chemistry , Nanostructures/chemistry , Uric Acid/chemistry , Glucose/chemistry , Microelectrodes , Oxidation-Reduction
17.
ACS Nano ; 4(7): 4149-57, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20527809

ABSTRACT

Growth of amorphous carbon nanocoil (CNC) from acetylene on Si substrates was achieved by using nanosized Ag and K as the catalysts. The deposition of CNC was carried out inside a hot-wall reactor at 723 K using H2 as the carrier gas. Based on the observed results, we propose a cooperative bimetal catalyst enhanced vapor-liquid-solid (VLS) growth mechanism to rationalize the CNC growth. In the reaction, the liquid phase metallic K dehydrogenated acetylene into the solid-state carbon, while the Ag nanoparticle assisted the extension of carbon one-dimensionally (1-D) via a tip-growth mechanism. Due to the adhesive force between the K liquid and the carbon, the 1-D solid curled along the C-K interface into the nanocoil shape. Some CNC samples were further heat-treated at 1423 K and showed very good field emission properties. They emitted electrons (10 microA/cm2) at a turn-on field Eto of 2.51 V/microm, while Jmax reached 17.71 mA/cm2 at 5.64 V/microm. The field enhancement factor beta was calculated to be 2124, comparable to other carbon nanotube (CNT) and CNC based emitters. The CNC was also characterized by using the electrochemical behavior of K3[Fe(CN)6] via cyclic voltammetry (CV). The electrochemical surface area of a CNC electrode (geometric surface area 0.078 cm2) was calculated to be 0.143 cm2. These properties suggest that the CNC electrodes may have potential applications in field emission and electrochemical devices.


Subject(s)
Acetylene/chemistry , Carbon/chemistry , Nanostructures/chemistry , Potassium/chemistry , Silver/chemistry , Temperature , Catalysis , Electrochemistry , Electrons , Surface Properties , Volatilization
18.
ACS Appl Mater Interfaces ; 2(2): 331-4, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20356175

ABSTRACT

This work describes newly structured stacked silicon nanowires (s-SiNWs), consisting of nanosized silicon wires on top of silicon microrods (SiMRs) and exhibiting pronouncedly superior electron field emission (EFE) characteristics to the conventional SiNWs, by using a two-step electroless metal deposition process. Experimental results indicate that for these s-SiNWs, the electrostatic "screen effect" is markedly suppressed and the field enhancement factor (beta-value) is significantly increased ((beta)(s-SiNWs) = 2533). Additionally, the turn-on field (E(0)) for triggering the EFE process is reduced to a level comparable with that of carbon nanotubes, viz. (E(0))(s-SiNWs) = 2.0 V/mum. This simple and robust modified electroless metal deposition approach does not require either a high temperature or an expensive photolithographic process and possesses great potential for applications.

19.
Anal Chem ; 81(18): 7590-6, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19653662

ABSTRACT

This work is the first to describe a bioimaging method that uses highly uniformly sized TiO(2) submicrometer and micrometer spheres based on Mie scattering. Transmembrane proteins (HER2) located on the surface of cancer cells were detected by bonded antibody-linked TiO(2) spheres using optic microscopy and UV-vis spectroscopy. A particular HER2 bond on cancer cells, which has a weaker binding affinity than the biotin/avidin interaction, can be identified between TiO(2) spheres that are linked to anti-HER2 antibodies and those that are linked to nonspecific mouse IgG antibodies by observing the cells under an optical microscope or by measuring absorbance from a UV-vis spectrum. The TiO(2) spheres used in this work was prepared by reacting TTIP with carboxylic acid, as described elsewhere and the uniformity of the TiO(2) sphere was further improved by adjusting the amount of water used. The water content was inversely related to particle size and the size distribution: as more water was used, smaller spheres with a narrower size distribution were obtained. The most uniform sphere obtained had a diameter of about 1 microm with a size variation of 3%.


Subject(s)
Microscopy/methods , Neoplasms, Experimental/chemistry , Receptor, ErbB-2/analysis , Spectrophotometry, Ultraviolet/methods , Titanium/chemistry , Animals , Antibodies, Immobilized/immunology , Mice , Phase Transition , Scattering, Radiation , Tumor Cells, Cultured
20.
ACS Appl Mater Interfaces ; 1(7): 1375-8, 2009 Jul.
Article in English | MEDLINE | ID: mdl-20355937

ABSTRACT

Growth of arrays of pagoda-topped tetragonal Cu nanopillar (length 1- 6 mum; width 150 +/- 25 nm) with {100} side faces on Au/glass is achieved by a simple electrochemical reduction of CuCl(2)(aq) by Al(s) in aqueous dodecyltrimethylammonium chloride. Field-emission measurement shows that the Cu nanopillars can emit electrons (10 muA cm(-2)) at a turn-on field of 12.4 V mum(-1) with a calculated field enhancement factor of 713.


Subject(s)
Copper/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Aluminum/chemistry , Electrochemistry/methods , Electrodes , Equipment Design , Glass , Materials Testing , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...