Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 13: 701702, 2021.
Article in English | MEDLINE | ID: mdl-34248610

ABSTRACT

The correlation among olfactory dysfunction, spinal cord injury (SCI), subjective cognitive decline, and neurodegenerative dementia has been established. Impaired olfaction is considered a marker for neurodegeneration. Hence, there is a need to examine if SCI leads to olfactory dysfunction. In this study, the brain tissue of mice with spinal cord hemisection injury was subjected to microarray analysis. The mRNA expression levels of olfactory receptors in the brain began to decline at 8 h post-SCI. SCI promoted neuroinflammation, downregulated the expression of olfactory receptors, decreased the number of neural stem cells (NSCs), and inhibited the production of neurotrophic factors in the olfactory bulbs at 8 h post-SCI. In particular, the SCI group had upregulated mRNA and protein expression levels of glial fibrillary acidic protein (GFAP; a marker of astrocyte reactivation) and pro-inflammatory mediators [IL-1ß, IL-6, and Nestin (marker of NSCs)] in the olfactory bulb compared to levels in the sham control group. The mRNA expression levels of olfactory receptors (Olfr1494, Olfr1324, Olfr1241, and Olfr979) and neurotrophic factors [brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and nerve growth factor (NGF)] were downregulated in the olfactory bulb of the SCI group mice at 8 h post-SCI. The administration of granulocyte colony-stimulating factor (G-CSF) mitigated these SCI-induced pathological changes in the olfactory bulb at 8 h post-SCI. These results indicate that the olfactory bulb is vulnerable to environmental damage even if the lesion is located at sites distant from the brain, such as the spinal cord. Additionally, SCI initiated pathological processes, including inflammatory response, and impaired neurogenesis, at an early stage. The findings of this study will provide a basis for future studies on pathological mechanisms of early neurodegenerative diseases involving the olfactory bulb and enable early clinical drug intervention.

2.
Opt Lett ; 31(6): 835-7, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16544640

ABSTRACT

A backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser (SOAFL) with a femtosecond pulse width and an ultrahigh supermode-noise suppressing ratio (SMSR) is primarily demonstrated. The mode-locked SOAFL pulse with a spectral linewidth of 0.45 nm is shortened from 15 to 8.6 ps under chirp compensation in a 420 m long dispersion-compensated fiber, corresponding to a time-bandwidth product of 0.48. The eighth-order soliton is obtained by the nonlinearly soliton's compression of the chirp-compensated SOAFL pulse in a 112 m long single-mode fiber at an input peak power of 51 W, providing the pulse width, the linewidth, and the nearly transform-limited time-bandwidth product are <200 fs, 13.8 nm, and 0.34, respectively. The phase noise and integrated timing jitter at an offset frequency below 1 MHz are -105 dBc/Hz and 0.8 ps, respectively. An ultrahigh pulse-compression ratio of 43 and a SMSR of 87 dB for the eighth-order SOAFL soliton are reported.

3.
Opt Express ; 13(3): 1008-14, 2005 Feb 07.
Article in English | MEDLINE | ID: mdl-19494964

ABSTRACT

Optically harmonic mode-locking of a semiconductor optical amplifier fiber laser (SOAFL) induced by backward injecting a dark-optical comb is demonstrated for the first time. The dark-optical comb with 60-ps pulsewidth is generated from a Mach-Zehnder modulator, which is driven by an electrical comb at a DC offset of 0.3Vn. Theoretical simulation indicates that the backward injection of dark-optical comb results in a narrow gain window of 60 ps within one modulating period, providing a cross-gainmodulation induced mode-locking in the SOAFL with a shortest pulsewidth of 15 ps at repetition frequency of 1 GHz. The mode-locked SOAFL pulsewidth can be slightly shortened to 10.8 ps with a 200m-long dispersion compensating fiber. After nonlinearly soliton compression in a 5km-long single mode fiber, the pulsewidth, linewidth and time-bandwidth product become 1.2 ps, 2.06 nm and 0.31, respectively.

4.
Opt Express ; 13(22): 8772-80, 2005 Oct 31.
Article in English | MEDLINE | ID: mdl-19498911

ABSTRACT

Femtosecond nonlinear pulse compression of a wavelength-tunable, backward dark-optical-comb injection harmonic-mode-locked semiconductor optical amplifier based fiber laser (SOAFL) is demonstrated for the first time. Shortest mode-locked SOAFL pulsewidth of 15 ps at 1 GHz is generated, which can further be compressed to 180 fs after linear chirp compensation, nonlinear soliton compression, and birefringent filtering. A maximum pulsewidth compression ratio for the compressed eighth-order SOAFL soliton of up to 80 is reported. The pedestal-free eighth-order soliton can be obtained by injecting the amplified pulse with peak power of 51 W into a 107.5m-long single-mode fiber (SMF), providing a linewidth and time-bandwidth product of 13.8 nm and 0.31, respectively. The tolerance in SMF length is relatively large (100-300 m) for obtaining <200fs SOAFL pulsewidth at wavelength tuning range of 1530-1560 nm. By extending the repetition frequency of dark-optical-comb up to 10 GHz, the mode-locked SOAFL pulsewidth can be slightly shortened from 5.4 ps to 3.9 ps after dispersion compensating, and further to 560 fs after second-order soliton compression. The lasing linewidth, time-bandwidth product and pulsewidth suppressing ratio of the SOAFL soliton become 4.5 nm, 0.33, and 10, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...