Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Geophys Res Lett ; 49(20): e2022GL098274, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36582354

ABSTRACT

There is a lack of satellite-based aerosol retrievals in the vicinity of low-topped clouds, mainly because reflectance from aerosols is overwhelmed by three-dimensional cloud radiative effects. To account for cloud radiative effects on reflectance observations, we develop a Convolutional Neural Network and retrieve aerosol optical depth (AOD) with 100-500 m horizontal resolution for all cloud-free regions regardless of their distances to clouds. The retrieval uncertainty is 0.01 + 5%AOD, and the mean bias is approximately -2%. In an application to satellite observations, aerosol hygroscopic growth due to humidification near clouds enhances AOD by 100% in regions within 1 km of cloud edges. The humidification effect leads to an overall 55% increase in the clear-sky aerosol direct radiative effect. Although this increase is based on a case study, it highlights the importance of aerosol retrievals in near-cloud regions, and the need to incorporate the humidification effect in radiative forcing estimates.

2.
Geophys Res Lett ; 48(2): e2020GL091236, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33678926

ABSTRACT

We introduce new parameterizations for autoconversion and accretion rates that greatly improve representation of the growth processes of warm rain. The new parameterizations capitalize on machine-learning and optimization techniques and are constrained by in situ cloud probe measurements from the recent Atmospheric Radiation Measurement Program field campaign at Azores. The uncertainty in the new estimates of autoconversion and accretion rates is about 15% and 5%, respectively, outperforming existing parameterizations. Our results confirm that cloud and drizzle water content are the most important factors for determining accretion rates. However, for autoconversion, in addition to cloud water content and droplet number concentration, we discovered a key role of drizzle number concentration that is missing in current parameterizations. The robust relation between autoconversion rate and drizzle number concentration is surprising but real, and furthermore supported by theory. Thus, drizzle number concentration should be considered in parameterizations for improved representation of the autoconversion process.

3.
Rev Geophys ; 56(2): 409-453, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30148283

ABSTRACT

The cloud droplet number concentration (N d) is of central interest to improve the understanding of cloud physics and for quantifying the effective radiative forcing by aerosol-cloud interactions. Current standard satellite retrievals do not operationally provide N d, but it can be inferred from retrievals of cloud optical depth (τ c) cloud droplet effective radius (r e) and cloud top temperature. This review summarizes issues with this approach and quantifies uncertainties. A total relative uncertainty of 78% is inferred for pixel-level retrievals for relatively homogeneous, optically thick and unobscured stratiform clouds with favorable viewing geometry. The uncertainty is even greater if these conditions are not met. For averages over 1° ×1° regions the uncertainty is reduced to 54% assuming random errors for instrument uncertainties. In contrast, the few evaluation studies against reference in situ observations suggest much better accuracy with little variability in the bias. More such studies are required for a better error characterization. N d uncertainty is dominated by errors in r e, and therefore, improvements in r e retrievals would greatly improve the quality of the N d retrievals. Recommendations are made for how this might be achieved. Some existing N d data sets are compared and discussed, and best practices for the use of N d data from current passive instruments (e.g., filtering criteria) are recommended. Emerging alternative N d estimates are also considered. First, new ideas to use additional information from existing and upcoming spaceborne instruments are discussed, and second, approaches using high-quality ground-based observations are examined.

SELECTION OF CITATIONS
SEARCH DETAIL