Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Org Biomol Chem ; 18(37): 7238-7252, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32926036

ABSTRACT

Diarylethenes (DAEs) represent an important class of photochromes with notable characteristics, like thermally irreversible photoisomerization and high fatigue resistance. Structural diversification of the DAE scaffold has enabled further refinement of photochromic properties and realization of new applications, ranging from advanced materials to tools for studying biological systems. In particular, methods for synthesizing non-symmetric DAE scaffolds, which are typically more challenging to synthesize than their symmetric counterparts, have grown over the past 20 years. These developments are surveyed in this review, with discussion of how access to these compounds has contributed to the improvement of photochromic properties and paved the way for exploring new applications of DAEs. First, non-symmetric DAE structures are classified and their uses and applications are overviewed. Subsequent sections discuss the main strategies that have been used to access non-symmetric DAEs with examples illustrating the impact of non-symmetric DAEs in the growing field of light-controlled molecular systems.

2.
Angew Chem Int Ed Engl ; 58(45): 16210-16216, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31557392

ABSTRACT

Deterministic methods for tuning polymer dispersity are rare, especially for nonradical polymerizations. Reported here is the first example of photomodulating dispersity in controlled cationic polymerizations of vinyl ethers using carboxy-functionalized dithienylethene initiators. Reversible photoisomerization of these initiators induces changes in their acidities by up to an order of magnitude. Using the more acidic, ring-closed isomers as initiators results in polymers with lower dispersities. The degree of light-induced pKa change in the initiators correlates with the degree of dispersity change in polymers derived from the isomeric initiators. The polymerizations are controlled, and dynamic photoswitching of dispersity during the polymerization reaction was demonstrated. This work provides a framework for photomodulating dispersity in other controlled polymerizations and developing one-pot block copolymerization reactions in which the dispersities of component blocks can be controlled using light.

3.
Chem Sci ; 9(15): 3694-3703, 2018 Apr 21.
Article in English | MEDLINE | ID: mdl-29780500

ABSTRACT

Förster Resonance Energy Transfer (FRET) is the incoherent transfer of an electronic excitation from a donor fluorophore to a nearby acceptor. FRET has been applied as a probe of local chromophore environments and distances on the nanoscale by extrapolating transfer efficiencies from standard experimental parameters, such as fluorescence intensities or lifetimes. Competition from nonradiative relaxation processes is often assumed to be constant in these extrapolations, but in actuality, this competition depends on the donor and acceptor environments and can, therefore, be affected by conformational changes. To study the effects of nonradiative relaxation on FRET dynamics, we perform two-dimensional electronic spectroscopy (2DES) on a pair of azaboraindacene (BODIPY) dyes, attached to opposite arms of a resorcin[4]arene cavitand. Temperature-induced switching between two equilibrium conformations, vase at 294 K to kite at 193 K, increases the donor-acceptor distance from 0.5 nm to 3 nm, affecting both FRET efficiency and nonradiative relaxation. By disentangling different dynamics based on lifetimes extracted from a series of 2D spectra, we independently observe nonradiative relaxation, FRET, and residual fluorescence from the donor in both vase to kite conformations. We observe changes in both FRET rate and nonradiative relaxation when the molecule switches from vase to kite, and measure a significantly greater difference in transfer efficiency between conformations than would be determined by standard lifetime-based measurements. These observations show that changes in competing nonradiative processes must be taken into account when highly accurate measurements of FRET efficiency are desired.

4.
Angew Chem Int Ed Engl ; 54(1): 349-54, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25425560

ABSTRACT

The formal [2+2] cycloaddition-retroelectrocyclization (CA-RE) reactions between tetracyanoethylene (TCNE) and strained, electron-rich dibenzo-fused cyclooctynes were studied. The effect of ring strain on the reaction kinetics was quantified, revealing that the rates of cycloaddition using strained, cyclic alkynes are up to 5500 times greater at 298 K than those of reactions using unstrained alkynes. Cyclobutene reaction intermediates, as well as buta-1,3-diene products, were isolated and their structures were studied crystallographically. Isolation of a rare example of a chiral buta-1,3-diene that is optically active and configurationally stable at room temperature is reported. Computational studies on the enantiomerization pathway of the buta-1,3-diene products showed that the eight-membered ring inverts via a boat conformer in a ring-flip mechanism. In agreement with computed values, experimentally measured activation barriers of racemization in these compounds were found to be up to 26 kcal mol(-1) .

5.
Nat Commun ; 5: 3573, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24736391

ABSTRACT

A crystal's structure has significant impact on its resulting biological, physical, optical and electronic properties. In organic electronics, 6,13(bis-triisopropylsilylethynyl)pentacene (TIPS-pentacene), a small-molecule organic semiconductor, adopts metastable polymorphs possessing significantly faster charge transport than the equilibrium crystal when deposited using the solution-shearing method. Here, we use a combination of high-speed polarized optical microscopy, in situ microbeam grazing incidence wide-angle X-ray-scattering and molecular simulations to understand the mechanism behind formation of metastable TIPS-pentacene polymorphs. We observe that thin-film crystallization occurs first at the air-solution interface, and nanoscale vertical spatial confinement of the solution results in formation of metastable polymorphs, a one-dimensional and large-area analogy to crystallization of polymorphs in nanoporous matrices. We demonstrate that metastable polymorphism can be tuned with unprecedented control and produced over large areas by either varying physical confinement conditions or by tuning energetic conditions during crystallization through use of solvent molecules of various sizes.


Subject(s)
Crystallization , Organosilicon Compounds , Semiconductors , Crystallography, X-Ray , Electronics , Optical Imaging
6.
Org Lett ; 14(1): 54-7, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22124331

ABSTRACT

A formal [2 + 2] cycloaddition-cycloreversion (CA-CR) between N,N'-dicyanoquinone diimides (DCNQIs) and electron-rich alkynes was explored, providing a new class of π-conjugated donor-acceptor chromophores. These DCNQI adducts exist in the solid state as single diastereoisomers, but as two interconverting diastereoisomers in solution. Solid- and solution-state evidence for intramolecular charge transfer (CT) was obtained; additionally, the DCNQI adducts exhibit positive solvatochromism and significant solution-state third-order polarizabilities.

7.
Chemistry ; 17(22): 6088-97, 2011 May 23.
Article in English | MEDLINE | ID: mdl-21503989

ABSTRACT

The substrate scope of the [2+2] cycloaddition-cycloreversion (CA-CR) reaction between electron-deficient (2,2-dicyanovinyl)benzene (DCVB) or (1,2,2-tricyanovinyl)benzene (TCVB) derivatives and N,N-dimethylanilino (DMA)-substituted acetylenes was investigated. The structural features of the cyanobutadiene products of these transformations were examined and the rates of selected CA-CR reactions were measured. Rate constants for reactions utilizing pentafluorinated TCVB and DCVB were found to be one to two orders of magnitude larger than those for the unsubstituted analogues. Multiple, consecutive CA-CR reactions were performed with substrates incorporating two reactive 2,2-cyanovinyl or 4-ethynylanilino sites. 1,4-Bis(2,2-dicyanovinyl)-2,3,5,6-tetrafluorobenzene and 1,4-bis[(4'-dihexylamino)phenylethynyl]benzene were selected as suitably reactive monomers for the synthesis of regular [AB] oligomers wherein the push-pull chromophores were formed in the chain-growth step. Oligomers of two types were isolated: macrocyclic [AB](n) and open-chain B[AB](n) oligomers, with n≤4.

8.
J Am Chem Soc ; 131(16): 6021-32, 2009 Apr 29.
Article in English | MEDLINE | ID: mdl-19338305

ABSTRACT

This work details the development of ruthenium(II) catalysts for the enantioselective alkylation of chiral racemic secondary phosphines. The reactions proceed through the intermediacy of nucleophilic phosphido species, which have low barriers to pyramidal inversion; this allows for a dynamic kinetic asymmetric alkylation. The initially discovered [((R)-iPr-PHOX)(2)Ru(H)][BPh(4)] (6) catalyst was found to be effective in the reaction with benzylic chlorides; moreover, the alkylation displayed an unusual temperature dependence. However, the limited scope of alkylation of 6 motivated further studies which led to the development of two complementary chiral mixed ligand Ru(II) catalysts of type [L(1)L(2)Ru(H)](+). These catalysts were derived from a combination of one chiral and one achiral ligand, where a synergistic interaction of the two ligands creates an effective asymmetric environment around the ruthenium center. The (R)-MeO-BiPHEP/dmpe (dmpe = 1,2-bis(dimethylphosphino)ethane) catalyst (10) was found to be effective for the asymmetric alkylation of benzylic chlorides, while the (R)-DIFLUORPHOS/dmpe catalyst (11) was optimal for the nucleophilic substitution of less activated alkyl bromides; the scope of the respective catalysts was also explored.


Subject(s)
Phosphines/chemical synthesis , Ruthenium/chemistry , Catalysis , Phosphines/chemistry , Stereoisomerism
10.
Organometallics ; 25(20): 4731-4733, 2006 Sep 25.
Article in English | MEDLINE | ID: mdl-19079735

ABSTRACT

In situ combination of diphosphinic amides and Zr(NMe(2))(4) results in the formation of chiral zirconium bis(amido) complexes. The complexes are competent catalysts for intramolecular asymmetric alkene hydroamintion, providing piperidines and pyrrolidines in up to 80% ee and high yield. This system utilizes an inexpensive zirconium precatalyst and readily prepared ligands and is the first asymmetric alkene hydroamination catalyst based upon a neutral zirconium bis(amido) complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...