Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol Sci ; 451: 120731, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37454574

ABSTRACT

BACKGROUND: Nigrosome-1 imaging has been used for assisting the diagnosis of Parkinson's disease (PD). We aimed to examine the diagnostic performance of loss of nigrosome-1 in PD and the correlation between the size of the nigrosome-1 and motor severity of PD. METHODS: We included 237 patients with PD and 165 controls. The motor severity of PD was assessed with the Unified Parkinson's Disease Rating Scale (UPDRS) part III score and Hoehn-Yahr staging. The 3 or 1.5 Tesla susceptibility-weighted imaging combined with a deep-learning algorithm was applied for detecting the loss and the size of nigrosome-1. Clinical correlations and diagnostic performance of size of nigrosome-1 were also investigated. RESULTS: The mean nigrosome-1 size was significantly smaller in PD patients than in controls (0.06 ± 0.07 cm2 vs. 0.20 ± 0.05 cm2, P < 0.001). The area under the receiver operating characteristic curve (AUC) of the established model showed 0.94 accuracy (95% confidence interval [CI]: 0.87, 1.01, P < 0.01) in differentiating between the PD and control groups. Moreover, the partial loss of nigrosome-1 detected with SWI had an AUC of 0.96 in discriminating early-stage PD from controls (95% CI: 0.88, 1.02, P < 0.001). After adjusting for age, sex, disease duration, and levodopa equivalent daily dose, the estimated size of nigrosome-1 was negatively associated with the UPDRS part III motor score (ρ = -0.433, P < 0.001), but not with Mini-Mental State Examination scores (ρ = 0.006, P = 0.894). CONCLUSIONS: The extent of loss and the size of nigrosome-1 may potentially assist in the diagnosis of PD. Nigrosome-1 size reflects the motor severity of PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Levodopa , Substantia Nigra/diagnostic imaging
2.
ACS Chem Neurosci ; 13(23): 3263-3270, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36378559

ABSTRACT

Alzheimer's disease (AD) progresses relentlessly from the preclinical to the dementia stage. The process begins decades before the diagnosis of dementia. Therefore, it is crucial to detect early manifestations to prevent cognitive decline. Recent advances in artificial intelligence help tackle the complex high-dimensional data encountered in clinical decision-making. In total, we recruited 206 subjects, including 69 cognitively unimpaired, 40 subjective cognitive decline (SCD), 34 mild cognitive impairment (MCI), and 63 AD dementia (ADD). We included 3 demographic, 1 clinical, 18 brain-image, and 3 plasma biomarker (Aß1-42, Aß1-40, and tau protein) features. We employed the linear discriminant analysis method for feature extraction to make data more distinguishable after dimension reduction. The sequential forward selection method was used for feature selection to identify the 12 best features for machine learning classifiers. We used both random forest and support vector machine as classifiers. The area under the receiver operative curve (AUROC) was close to 0.9 between diseased (combining ADD and MCI) and the controls. AUROC was higher than 0.85 between SCD and controls, 0.90 between MCI and SCD, and above 0.85 between ADD and MCI. We can differentiate between adjacent phases of the AD spectrum with blood biomarkers and brain MR images with the help of machine learning algorithms.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Artificial Intelligence , Cognitive Dysfunction/diagnosis , Machine Learning
3.
NPJ Parkinsons Dis ; 8(1): 145, 2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36309501

ABSTRACT

Hypomimia and voice changes are soft signs preceding classical motor disability in patients with Parkinson's disease (PD). We aim to investigate whether an analysis of acoustic and facial expressions with machine-learning algorithms assist early identification of patients with PD. We recruited 371 participants, including a training cohort (112 PD patients during "on" phase, 111 controls) and a validation cohort (74 PD patients during "off" phase, 74 controls). All participants underwent a smartphone-based, simultaneous recording of voice and facial expressions, while reading an article. Nine different machine learning classifiers were applied. We observed that integrated facial and voice features could discriminate early-stage PD patients from controls with an area under the receiver operating characteristic (AUROC) diagnostic value of 0.85. In the validation cohort, the optimal diagnostic value (0.90) maintained. We concluded that integrated biometric features of voice and facial expressions could assist the identification of early-stage PD patients from aged controls.

4.
Sci Rep ; 12(1): 11901, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831415

ABSTRACT

Although in-hospital cardiac arrest is uncommon, it has a high mortality rate. Risk identification of at-risk patients is critical for post-cardiac arrest survival rates. Early warning scoring systems are generally used to identify hospitalized patients at risk of deterioration. However, these systems often require clinical data that are not always regularly measured. We developed a more accurate, machine learning-based model to predict clinical deterioration. The time series early warning score (TEWS) used only heart rate, systolic blood pressure, and respiratory data, which are regularly measured in general wards. We tested the performance of the TEWS in two tasks performed with data from the electronic medical records of 16,865 adult admissions and compared the results with those of other classifications. The TEWS detected more deteriorations with the same level of specificity as the different algorithms did when inputting vital signs data from 48 h before an event. Our framework improved in-hospital cardiac arrest prediction and demonstrated that previously obtained vital signs data can be used to identify at-risk patients in real-time. This model may be an alternative method for detecting patient deterioration.


Subject(s)
Heart Arrest , Patients' Rooms , Adult , Heart Arrest/diagnosis , Humans , Inpatients , Retrospective Studies , Time Factors , Vital Signs
5.
J Digit Imaging ; 34(4): 948-958, 2021 08.
Article in English | MEDLINE | ID: mdl-34244880

ABSTRACT

The purpose of this study was to detect the presence of retinitis pigmentosa (RP) based on color fundus photographs using a deep learning model. A total of 1670 color fundus photographs from the Taiwan inherited retinal degeneration project and National Taiwan University Hospital were acquired and preprocessed. The fundus photographs were labeled RP or normal and divided into training and validation datasets (n = 1284) and a test dataset (n = 386). Three transfer learning models based on pre-trained Inception V3, Inception Resnet V2, and Xception deep learning architectures, respectively, were developed to classify the presence of RP on fundus images. The model sensitivity, specificity, and area under the receiver operating characteristic (AUROC) curve were compared. The results from the best transfer learning model were compared with the reading results of two general ophthalmologists, one retinal specialist, and one specialist in retina and inherited retinal degenerations. A total of 935 RP and 324 normal images were used to train the models. The test dataset consisted of 193 RP and 193 normal images. Among the three transfer learning models evaluated, the Xception model had the best performance, achieving an AUROC of 96.74%. Gradient-weighted class activation mapping indicated that the contrast between the periphery and the macula on fundus photographs was an important feature in detecting RP. False-positive results were mostly obtained in cases of high myopia with highly tessellated retina, and false-negative results were mostly obtained in cases of unclear media, such as cataract, that led to a decrease in the contrast between the peripheral retina and the macula. Our model demonstrated the highest accuracy of 96.00%, which was comparable with the average results of 81.50%, of the other four ophthalmologists. Moreover, the accuracy was obtained at the same level of sensitivity (95.71%), as compared to an inherited retinal disease specialist. RP is an important disease, but its early and precise diagnosis is challenging. We developed and evaluated a transfer-learning-based model to detect RP from color fundus photographs. The results of this study validate the utility of deep learning in automating the identification of RP from fundus photographs.


Subject(s)
Deep Learning , Retinal Degeneration , Retinitis Pigmentosa , Artificial Intelligence , Fundus Oculi , Humans , Retinitis Pigmentosa/diagnostic imaging , Retinitis Pigmentosa/genetics
6.
Int J Mol Sci ; 21(18)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967146

ABSTRACT

Easily accessible biomarkers for Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD), and related neurodegenerative disorders are urgently needed in an aging society to assist early-stage diagnoses. In this study, we aimed to develop machine learning algorithms using the multiplex blood-based biomarkers to identify patients with different neurodegenerative diseases. Plasma samples (n = 377) were obtained from healthy controls, patients with AD spectrum (including mild cognitive impairment (MCI)), PD spectrum with variable cognitive severity (including PD with dementia (PDD)), and FTD. We measured plasma levels of amyloid-beta 42 (Aß42), Aß40, total Tau, p-Tau181, and α-synuclein using an immunomagnetic reduction-based immunoassay. We observed increased levels of all biomarkers except Aß40 in the AD group when compared to the MCI and controls. The plasma α-synuclein levels increased in PDD when compared to PD with normal cognition. We applied machine learning-based frameworks, including a linear discriminant analysis (LDA), for feature extraction and several classifiers, using features from these blood-based biomarkers to classify these neurodegenerative disorders. We found that the random forest (RF) was the best classifier to separate different dementia syndromes. Using RF, the established LDA model had an average accuracy of 76% when classifying AD, PD spectrum, and FTD. Moreover, we found 83% and 63% accuracies when differentiating the individual disease severity of subgroups in the AD and PD spectrum, respectively. The developed LDA model with the RF classifier can assist clinicians in distinguishing variable neurodegenerative disorders.


Subject(s)
Amyloid beta-Peptides/blood , Cognitive Dysfunction , Machine Learning , Neurodegenerative Diseases , Peptide Fragments/blood , alpha-Synuclein/blood , tau Proteins/blood , Aged , Aged, 80 and over , Biomarkers/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/classification , Female , Humans , Male , Middle Aged , Neurodegenerative Diseases/blood , Neurodegenerative Diseases/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...