Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839048

ABSTRACT

BACKGROUND: Some individuals may not retain adequate immunity against measles and rubella years after two doses of measles, mumps, and rubella (MMR) vaccination due to vaccine failure. This study aimed to investigate the rates of vaccine failure and seroconversion by administering an MMR booster to young adults. METHODS: We first assessed measles and rubella antibody levels using the Luminex multiplex assay, VIDAS IgG assay, and plaque reduction neutralization test (PRNT) among individuals aged 18-30 years old who had received two doses of MMR vaccine. Participants with low measles and/or rubella antibody levels as confirmed by VIDAS received an MMR booster. Antibody levels were measured at 1-month post-booster. RESULTS: Among 791 participants, the measles and rubella seroprevalence rates were 94.7% (95% CI: 92.9%-96.0%) and 97.3% (95% CI: 96.0%-98.3%), respectively. Lower seroprevalence rates were observed among older participants. 113 participants who received an MMR booster acquired higher measles and rubella antibody levels at 1-month post-booster compared to baseline. CONCLUSIONS: Although measles and rubella vaccine failures were observed among 5.3% and 2.7% of young adults, respectively, an MMR booster triggered a significant antibody response.

3.
Hum Mol Genet ; 29(17): 2882-2898, 2020 10 10.
Article in English | MEDLINE | ID: mdl-32776088

ABSTRACT

The role of Discoidin Domain Receptors (DDRs) is poorly understood in neurodegeneration. DDRs are upregulated in Alzheimer's and Parkinson's disease (PD), and DDRs knockdown reduces neurotoxic protein levels. Here we show that potent and preferential DDR1 inhibitors reduce neurotoxic protein levels in vitro and in vivo. Partial or complete deletion or inhibition of DDR1 in a mouse model challenged with α-synuclein increases autophagy and reduces inflammation and neurotoxic proteins. Significant changes of cerebrospinal fluid microRNAs that control inflammation, neuronal injury, autophagy and vesicular transport genes are observed in PD with and without dementia and Lewy body dementia, but these changes are attenuated or reversed after treatment with the DDR1 inhibitor, nilotinib. Collectively, these data demonstrate that DDR1 regulates autophagy and reduces neurotoxic proteins and inflammation and is a therapeutic target in neurodegeneration.


Subject(s)
Discoidin Domain Receptor 1/genetics , Lewy Body Disease/drug therapy , Neurodegenerative Diseases/genetics , Parkinson Disease/drug therapy , alpha-Synuclein/genetics , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Discoidin Domain Receptor 1/antagonists & inhibitors , Disease Models, Animal , Humans , Inflammation/complications , Inflammation/drug therapy , Inflammation/genetics , Inflammation/pathology , Lewy Body Disease/genetics , Lewy Body Disease/pathology , Mice , MicroRNAs/genetics , Neurodegenerative Diseases/pathology , Parkinson Disease/complications , Parkinson Disease/genetics , Parkinson Disease/pathology , Pyrimidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...