Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
ACS Appl Mater Interfaces ; 14(36): 40771-40783, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36040289

ABSTRACT

In this work, we demonstrated the practical use of Au@Cu2O core-shell and Au@Cu2Se yolk-shell nanocrystals as photocatalysts in photoelectrochemical (PEC) water splitting and photocatalytic hydrogen (H2) production. The samples were prepared by conducting a sequential ion-exchange reaction on a Au@Cu2O core-shell nanocrystal template. Au@Cu2O and Au@Cu2Se displayed enhanced charge separation as the Au core and yolk can attract photoexcited electrons from the Cu2O and Cu2Se shells. The localized surface plasmon resonance (LSPR) of Au, on the other hand, can facilitate additional charge carrier generation for Cu2O and Cu2Se. Finite-difference time-domain simulations were carried out to explore the amplification of the localized electromagnetic field induced by the LSPR of Au. The charge transfer dynamics and band alignment of the samples were examined with time-resolved photoluminescence and ultraviolet photoelectron spectroscopy. As a result of the improved interfacial charge transfer, Au@Cu2O and Au@Cu2Se exhibited a substantially larger photocurrent of water reduction and higher photocatalytic activity of H2 production than the corresponding pure counterpart samples. Incident photon-to-current efficiency measurements were conducted to evaluate the contribution of the plasmonic effect of Au to the enhanced photoactivity. Relative to Au@Cu2O, Au@Cu2Se was more suited for PEC water splitting and photocatalytic H2 production by virtue of the structural advantages of yolk-shell architectures. The demonstrations from the present work may shed light on the rational design of sophisticated metal-semiconductor yolk-shell nanocrystals, especially those comprising metal selenides, for superior photocatalytic applications.

3.
J Chem Phys ; 151(15): 154705, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640377

ABSTRACT

In this work, we studied the effects of particles' size and temperature on the photoluminescence (PL) of CH3NH3PbBr3 perovskite nanocrystals (PNCs), with the PNC size controlled by varying the surface passivating ligands. The structural and optical properties of the PNCs were investigated using UV-Vis and PL spectroscopy, revealing strong quantum confinement effects. Temperature dependent PL measurements showed the spectral blue shift of the PL peak for the small PNCs (3.1 ± 0.2 nm) with decreasing temperature from 300 K to 20 K, which is opposite to the red shift with decreasing temperature observed for large- (9.2 ± 0.5 nm) and middle-sized (5.1 ± 0.3 nm) PNCs. The PL lifetime also increased with increasing temperature for the larger PNCs, while it remained about the same for the small and middle-sized PNCs. This increase in lifetime with temperature is attributed to exciton dissociation to free carriers at higher temperatures and to the formation of polar domains in the PNCs. However, the small and middle-sized PNCs did not show such a trend, which may be due to efficient defect passivation as higher concentration of 3-aminopropyl trimethoxysilane (APTMS) was used and to the role of particle size in surface state delocalization. Cryo-X-ray diffraction showed no new peak formation or peak splitting as temperature was varied, which suggests efficient crystal phase stabilization in PNCs of all three sizes controlled by the concentration of APTMS. These results emphasize the importance of size and surface properties of PNCs in their optical properties such as PL quantum yield, PL lifetime, and crystal phase stability.

4.
ACS Appl Mater Interfaces ; 11(3): 3006-3015, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30565913

ABSTRACT

As the feet of clay, photocorrosion induced by hole accumulation has placed serious limitations on the widespread deployment of sulfide nanostructures for photoelectrochemical (PEC) water splitting. Developing sufficiently stable electrodes to construct durable PEC systems is therefore the key to the realization of solar hydrogen production. Here, an innovative charge-transfer manipulation concept based on the aligned hole transport across the interface has been realized to enhance the photostability of In2S3 electrodes toward PEC solar hydrogen production. The concept was realized by conducting compact deposition of In2S3 nanocrystals on the TiO2 nanowire array. Under PEC operation, the supporting TiO2 nanowires functioned as an anisotropic charge-transfer backbone to arouse aligned charge transport across the TiO2-In2S3 interface. Because of the aligned hole transport, the TiO2 nanowire-supported In2S3 hybrid nanostructures (TiO2-In2S3) exhibited improved hole-transfer dynamics at the TiO2-In2S3 interface and enhanced hole injection kinetics at the electrode surface, substantially increasing the long-term photostability toward solar hydrogen production. The PEC durability tests showed that TiO2-In2S3 electrodes can achieve nearly 90.9% retention of initial photocurrent upon continuous irradiation for 6 h, whereas the pure In2S3 merely retained 20.8% of initial photocurrent. This double-gain charge-transfer manipulation concept is expected to convey a viable approach to the intelligent design of highly efficient and sufficiently stable sulfide photocatalysts for sustainable solar fuel generation.

5.
ACS Appl Mater Interfaces ; 11(3): 3582-3589, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30592409

ABSTRACT

ZnS particles were grown over Cu2O cubes, octahedra, and rhombic dodecahedra for examination of their facet-dependent photocatalytic behaviors. After ZnS growth, Cu2O cubes stay photocatalytically inactive. ZnS-decorated Cu2O octahedra show enhanced photocatalytic activity, resulting from better charge carrier separation upon photoexcitation. Surprisingly, Cu2O rhombic dodecahedra give greatly suppressed photocatalytic activity after ZnS deposition. Electron paramagnetic resonance spectra agree with these experimental observations. Time-resolved photoluminescence profiles provide charge-transfer insights. The decrease in the photocatalytic activity is attributed to an unfavorable band alignment caused by significant band bending within the Cu2O(110)/ZnS(200) plane interface. A modified Cu2O-ZnS band diagram is presented. Density functional theory calculations generating plane-specific band energy diagrams of Cu2O and ZnS match well with the experimental results, showing that charge transfer across the Cu2O(110)/ZnS(200) plane interface would not happen. This example further illustrates that the actual photocatalysis outcome for semiconductor heterojunctions cannot be assumed because interfacial charge transfer is strongly facet-dependent.

6.
ACS Appl Mater Interfaces ; 10(27): 22997-23008, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29664283

ABSTRACT

Poor kinetics of hole transportation at the electrode/electrolyte interface is regarded as a primary cause for the mediocre performance of n-type TiO2 photoelectrodes. By adopting nanotubes as the electrode backbone, light absorption and carrier collection can be spatially decoupled, allowing n-type TiO2, with its short hole diffusion length, to maximize the use of the available photoexcited charge carriers during operation in photoelectrochemical (PEC) water splitting. Here, we presented a delicate electrochemical anodization process for the preparation of quaternary Ti-Nb-Ta-Zr-O mixed-oxide (denoted as TNTZO) nanotube arrays and demonstrated their utility in PEC water splitting. The charge-transfer dynamics for the electrodes was investigated using time-resolved photoluminescence, electrochemical impedance spectroscopy, and the decay of open-circuit voltage analysis. Data reveal that the superior photoactivity of TNTZO over pristine TiO2 originated from the introduction of Nd, Ta, and Zr elements, which enhanced the amount of accessible charge carriers, modified the electronic structure, and improved the hole injection kinetics for expediting water splitting. By modulating the water content of the electrolyte employed in the anodization process, the wall thickness of the grown TNTZO nanotubes can be reduced to a size smaller than that of the depletion layer thickness, realizing a fully depleted state for charge carriers to further advance the PEC performance. Hydrogen evolution tests demonstrate the practical efficacy of TNTZO for realizing solar hydrogen production. Furthermore, with the composition complexity and fully depleted band structure, the present TNTZO nanotube arrays may offer a feasible and universal platform for the loading of other semiconductors to construct a sophisticated heterostructure photoelectrode paradigm, in which the photoexcited charge carriers can be entirely utilized for efficient solar-to-fuel conversion.

7.
J Control Release ; 259: 168-175, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28007514

ABSTRACT

Sodium dodecyl sulfate (SDS) is generally regarded as a potent permeability enhancer in oral formulations; however, one concern related to the use of any permeation enhancer is its possible absorption of unwanted toxins during the period of epithelial permeability enhancement. In this work, the safety and efficacy of an SDS-containing bubble carrier system that is developed from an orally administered enteric-coated capsule are evaluated. The bubble carriers comprise diethylene triamine pentaacetic acid (DTPA) dianhydride, sodium bicarbonate (SBC), SDS, and insulin. Upon exposure to the intestinal fluid, DTPA dianhydride hydrolyzes to yield acids, and SBC rapidly reacts with these acids to generate CO2, producing bubble carriers, each containing a self-assembling water film. The hydrophilic insulin is entrapped in the self-assembled water film, which is stabilized by SDS. The SDS in the bubble carrier system can act as a dissolution enhancer in the dispersion of insulin molecules, as a surfactant that stabilizes the bubble carriers, as a protease inhibitor that protects the protein drug, and as a permeation enhancer that augments its oral bioavailability. Hence, a significant increase in the plasma insulin level and an excellent blood glucose-lowering response in diabetic rats are effectively achieved. Moreover, the enhancement of epithelial permeation by this SDS-containing formulation does not promote the absorption of intestinal endotoxins. The above facts indicate that the bubble carrier system that is stabilized by SDS can be used as a safe and potent carrier in the oral delivery of therapeutic proteins.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Drug Carriers/administration & dosage , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Administration, Oral , Animals , Blood Glucose/analysis , Caco-2 Cells , Diabetes Mellitus, Experimental/blood , Drug Carriers/chemistry , Drug Carriers/therapeutic use , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Insulin/chemistry , Insulin/therapeutic use , Pentetic Acid/administration & dosage , Pentetic Acid/chemistry , Pentetic Acid/therapeutic use , Rats , Rats, Wistar , Sodium Bicarbonate/administration & dosage , Sodium Bicarbonate/chemistry , Sodium Bicarbonate/therapeutic use , Sodium Dodecyl Sulfate/administration & dosage , Sodium Dodecyl Sulfate/chemistry , Sodium Dodecyl Sulfate/therapeutic use , Trypsin/chemistry
8.
ACS Appl Mater Interfaces ; 8(48): 32754-32763, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27934128

ABSTRACT

Understanding of charge transfer processes is determinant to the performance optimization for semiconductor photocatalysts. As a representative model of composite photocatalysts, metal-particle-decorated ZnO has been widely employed for a great deal of photocatalytic applications; however, the dependence of charge carrier dynamics on the metal content and metal composition and their correlation with the photocatalytic properties have seldom been reported. Here, the interfacial charge dynamics for metal-decorated ZnO nanocrystals were investigated and their correspondence with the photocatalytic properties was evaluated. The samples were prepared with a delicate antisolvent approach, in which ZnO nanocrystals were grown along with metal particle decoration in a deep eutectic solvent. By modulating the experimental conditions, the metal content (from 0.6 to 2.3 at%) and metal composition (including Ag, Au, and Pd) in the resulting metal-decorated ZnO could be readily controlled. Time-resolved photoluminescence spectra showed that an optimal Au content of 1.3 at% could effectuate the largest electron transfer rate constant for Au-decorated ZnO nanocrystals, in conformity with the highest photocatalytic efficiency observed. The relevance of charge carrier dynamics to the metal composition was also inspected and realized in terms of the energy level difference between ZnO and metal. Among the three metal-decorated ZnO samples tested, ZnO-Pd displayed the highest photocatalytic activity, fundamentally according with the largest electron transfer rate constant deduced in carrier dynamics measurements. The current work was the first study to present the correlations among charge carrier dynamics, metal content, metal composition, and the resultant photocatalytic properties for semiconductor/metal heterostructures. The findings not only helped to resolve the standing issues regarding the mechanistic foundation of photocatalysis but also shed light on the intelligent design of semiconductor/metal composite systems to consolidate their utility in photocatalytic fields.

9.
Nanoscale ; 8(34): 15720-9, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27527337

ABSTRACT

For the first time a ZnO nanorod-based Z-scheme heterostructure system was proposed and realized for efficient photoelectrochemical water splitting. The samples were prepared by depositing a thin layer of SnO2 on the Au surface of Au particle-decorated ZnO nanorods. For ZnO-Au-SnO2 nanorods, the embedded Au can mediate interfacial charge transfer by promoting electron transfer from the conduction band of SnO2 to the valence band of ZnO. This vectorial charge transfer resulted in the situation that the photoexcited electrons accumulated at ZnO while the photogenerated holes concentrated at SnO2, giving ZnO-Au-SnO2 substantially high redox powers. Time-resolved photoluminescence spectra suggested that the interfacial charge transfer across the ZnO/Au/SnO2 interface was significantly improved as a result of the Z-scheme charge transfer mechanism. With the substantially high redox powers and significantly improved interfacial charge transfer, ZnO-Au-SnO2 nanorods performed much better as a photoanode in photoelectrochemical water splitting than pristine ZnO, plasmonic Au-decorated ZnO and type-II SnO2-coated ZnO nanorods did. The present study has provided a viable approach to exploit Z-scheme photoanodes in the design of efficient artificial photosynthesis systems for solar energy conversion.

10.
Nanoscale ; 6(15): 8796-803, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24954742

ABSTRACT

An environmentally benign antisolvent method has been developed to prepare Cu(2+)-doped ZnO nanocrystals with controllable dopant concentrations. A room temperature ionic liquid, known as a deep eutectic solvent (DES), was used as the solvent to dissolve ZnO powders. Upon the introduction of the ZnO-containing DES into a bad solvent which shows no solvation to ZnO, ZnO was precipitated and grown due to the dramatic decrease of solubility. By adding Cu(2+) ions to the bad solvent, the growth of ZnO from the antisolvent process was accompanied by Cu(2+) introduction, resulting in the formation of Cu(2+)-doped ZnO nanocrystals. The as-prepared Cu(2+)-doped ZnO showed an additional absorption band in the visible range (400-800 nm), which conduced to an improvement in the overall photon harvesting efficiency. Time-resolved photoluminescence spectra, together with the photovoltage information, suggested that the doped Cu(2+) may otherwise trap photoexcited electrons during the charge transfer process, inevitably depressing the photoconversion efficiency. The photoactivity of Cu(2+)-doped ZnO nanocrystals for photoelectrochemical water oxidation was effectively enhanced in the visible region, which achieved the highest at 2.0 at% of Cu(2+). A further increase in the Cu(2+) concentration however led to a decrease in the photocatalytic performance, which was ascribed to the significant carrier trapping caused by the increased states given by excessive Cu(2+). The photocurrent action spectra illustrated that the enhanced photoactivity of the Cu(2+)-doped ZnO nanocrystals was mainly due to the improved visible photon harvesting achieved by Cu(2+) doping. These results may facilitate the use of transition metal ion-doped ZnO in other photoconversion applications, such as ZnO based dye-sensitized solar cells and magnetism-assisted photocatalytic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...