Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 56(15): 2332-2335, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31990279

ABSTRACT

Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. Here, we report flexible all organic percolative nanocomposites that contain in situ grown conductive polymer networks and dielectric polymer matrix, in which their dielectric properties can be designed and guided from the percolation theory. High dielectric constant of all organic percolative nanocomposites is shown over a broad frequency range under intensive bending cycles, while their thermal stability is attributed to thermally conductive 2D montmorillonite nanosheets. The printable polymer composites with high dielectric performance and thermal stability will find broader interest in flexible hybrid electronics and radio frequency devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...