Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
2.
Heliyon ; 9(7): e17872, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37496918

ABSTRACT

The spinal cord is a structure of nervous tissue that primarily transmits nerve signals from the motor cortex to the body and from the afferent fibers of the sensory neurons to the sensory cortex. It is enveloped by three layers of meninges. Covering provides a supportive framework for the cerebral and cranial vasculature and protects the central nervous system (CNS) from mechanical damage. Surgical operation in the vicinity of the spinal cord is complicated and risky because it exposes it to probably irreversible damage. To reduce the risk of these operations, attempts have been made to remove the tumor using safer methods like waterjet operation. In these methods, the waterjet and spinal cord interaction are inevitable. To secure interaction of operation, a standard development of waterjet criteria is necessary. In this study, a system of waterjet is designed to perform sheep spinal cord as a tissue with a good resemblance to the human spinal cord. Effects of interaction between waterjet and sheep spinal cord are investigated to define a safe operation threshold. The impact of the liquid density of waterjet on failure criteria of spinal cord surgery is also investigated. Results show that meninges are stiff enough to protect the sheep spinal cord from rupture for pressures up to 8 bar; however internal spinal cord tissue cannot be guaranteed any damage. Three essential parameters represent the spinal cord meninges and spinal cord deformation during the tests. These parameters lead us to provide standard criteria for damage prevention of the spinal cord.

3.
Neuron ; 95(4): 955-970.e4, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28757304

ABSTRACT

How environmental and physiological signals interact to influence neural circuits underlying developmentally programmed social interactions such as male territorial aggression is poorly understood. We have tested the influence of sensory cues, social context, and sex hormones on progesterone receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) that are critical for male territorial aggression. We find that these neurons can drive aggressive displays in solitary males independent of pheromonal input, gonadal hormones, opponents, or social context. By contrast, these neurons cannot elicit aggression in socially housed males that intrude in another male's territory unless their pheromone-sensing is disabled. This modulation of aggression cannot be accounted for by linear integration of environmental and physiological signals. Together, our studies suggest that fundamentally non-linear computations enable social context to exert a dominant influence on developmentally hard-wired hypothalamus-mediated male territorial aggression.


Subject(s)
Aggression/physiology , Hypothalamus/cytology , Hypothalamus/physiology , Neurons/physiology , Social Behavior , Action Potentials/drug effects , Action Potentials/genetics , Adenoviridae/genetics , Animals , Antipsychotic Agents/pharmacology , Clozapine/analogs & derivatives , Clozapine/pharmacology , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Female , In Vitro Techniques , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Patch-Clamp Techniques , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Sex Factors , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL