Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 32(1): 013102, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35105130

ABSTRACT

An electronic system in an atom can be considered Hamiltonian only at times shorter than the spontaneous relaxation time. However, this time is sufficient for resonant action on the electronic system and for the implementation of the resonance inherent in Hamiltonian systems. In practice, there may be a case when it is expedient to use a hybrid approach to study nonlinear resonance, in which the classical theory can be used to calculate the action-dependent nonlinear resonance frequency, and the quantum theory can be used to calculate its correction. The use of such a hybrid approach becomes necessary when the resonant value of the action does not exceed Planck's constant many times. It is shown in the work that if the external electromagnetic field has the form of a periodic series of light pulses with a high duty cycle, then the phenomenon of nonlinear hybrid resonance leads to the appearance of a line in the low-frequency region of the electronic spectrum. The broadening of this line is determined using the rms quantum fluctuations.

2.
Chaos ; 30(6): 063104, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32611114

ABSTRACT

The Mathieu-Schrödinger equation, which describes the behavior of a quantum pendulum, depending on the value of the parameter l (pendulum filament length), can have the symmetry of the Klein's four-group or its invariant subgroups. The paper shows that the mean values of z-components of the angular momentum of nondegenerate quantum states (the symmetry region of the four-group) tend to zero and their root mean square fluctuations are non-zero. Consequently, in this region of parameter values, the fluctuations overlap the mean values of the angular momentum and they become indistinguishable. Therefore, it can be argued that if, with an increase in the parameter, the system goes into a non-degenerate state, then after the inversion of the parameter change and the transition to the region of degenerate states, the initial states will not be restored. This behavior of the average values of angular momenta is caused by the combined actions of two factors: discontinuous change in the system at the points of change of its symmetry and the presence of quantum fluctuations in nondegenerate states.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 2): 046606, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22181295

ABSTRACT

The nonlinear-oscillating system in action-angle variables is characterized by the dependence of frequency of oscillation ω(I) on action I. Periodic perturbation is capable of realizing in the system a stable nonlinear resonance at which the action I adapts to the resonance condition ω(I(0))≃ω, that is, "sticking" in the resonance frequency. For a particular physical problem there may be a case when I≫ℏ is the classical quantity, whereas its correction ΔI≃ℏ is the quantum quantity. Naturally, dynamics of ΔI is described by the quantum equation of motion. In particular, in the moderate nonlinearity approximation ɛ≪(dω/dI)(I/ω)≪1/ɛ, where ɛ is the small parameter, the description of quantum state is reduced to the solution of the Mathieu-Schrödinger equation. The state formed as a result of sticking in resonance is an eigenstate of the operator ΔI that does not commute with the Hamiltonian H. Expanding the eigenstate wave functions in Hamiltonian eigenfunctions, one can obtain a probability distribution of energy level population. Thus, an inverse level population for times lower than the relaxation time can be obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...