Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine ; 14(6): 1823-1832, 2018 08.
Article in English | MEDLINE | ID: mdl-29782949

ABSTRACT

Numerous proteases, such as matrix metalloproteinases (MMPs), cathepsins (CTS), and urokinase plasminogen activator (UpA), are dysfunctional (that is, over- or under-expressed) in solid tumors, when compared to healthy human subjects. This offers the opportunity to detect early tumors by liquid biopsies. This approach is of particular advantage for the early detection of pancreatic cancer, which is a "silent killer". We have developed fluorescence nanobiosensors for ultrasensitive (sub-femtomolar) arginase and protease detection, consisting of water-dispersible Fe/Fe3O4 core/shell nanoparticles and two tethered fluorescent dyes: TCPP (Tetrakis(4-carboxyphenyl)porphyrin) and cyanine 5.5. Upon posttranslational modification or enzymatic cleavage, the fluorescence of TCPP increases, which enables the detection of proteases at sub-femtomolar activities utilizing conventional plate readers. We have identified an enzymatic signature for the detection of pancreatic adenocarcinomas in serum, consisting of arginase, matrix metalloproteinase-1, -3, and - 9, cathepsin-B and -E, urokinase plasminogen activator, and neutrophil elastase, which is a potential game-changer.


Subject(s)
Biosensing Techniques , Carcinoma, Pancreatic Ductal/diagnosis , Early Detection of Cancer/methods , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Pancreatic Neoplasms/diagnosis , Case-Control Studies , Female , Humans , Liquid Biopsy , Male
2.
PLoS One ; 10(5): e0128144, 2015.
Article in English | MEDLINE | ID: mdl-26011247

ABSTRACT

The recent WHO report on antibiotic resistances shows a dramatic increase of microbial resistance against antibiotics. With only a few new antibiotics in the pipeline, a different drug delivery approach is urgently needed. We have obtained evidence demonstrating the effectiveness of a cell based drug delivery system that utilizes the innate immune system as targeting carrier for antibacterial drugs. In this study we show the efficient loading of neutrophil granulocytes with chlorhexidine and the complete killing of E. coli as well as Fusobacterium necrophorum in in-vitro studies. Fusobacterium necrophorum causes hepatic abscesses in cattle fed high grain diets. We also show in a mouse model that this delivery system targets infections of F. necrophorum in the liver and reduces the bacterial burden by an order of magnitude from approximately 2•106 to 1•105.


Subject(s)
Anti-Infective Agents, Local/administration & dosage , Cattle Diseases/therapy , Chlorhexidine/administration & dosage , Liver Abscess/veterinary , Micrococcus luteus/chemistry , Neutrophils/transplantation , Animals , Anti-Infective Agents, Local/therapeutic use , Cattle , Cattle Diseases/microbiology , Cell- and Tissue-Based Therapy/methods , Chlorhexidine/therapeutic use , Disease Models, Animal , Drug Delivery Systems/methods , Escherichia coli/drug effects , Fusobacterium necrophorum/drug effects , Liver Abscess/microbiology , Liver Abscess/therapy , Mice , Neutrophils/chemistry , Neutrophils/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...