Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 117(38): 10974-86, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-23234311

ABSTRACT

Photoprotective non-photochemical quenching (NPQ) in higher plants is the result of the formation of energy quenching traps in the light-harvesting antenna of photosystem II (PSII). It has been proposed that this quenching trap is a lutein molecule closely associated with the chlorophyll terminal emitter of the major light-harvesting complex LHCII. We have used a combination of time-dependent density functional theory (TD-DFT) and the semiempirical MNDO-CAS-CI method to model the chlorophyll-lutein energy transfer dynamics of the highly quenched crystal structure of LHCII. Our calculations reveal that the incoherent "hopping" of energy from Chla612 to the short-lived, dipole forbidden 2(1)A(g)(-) state of lutein620 accounts for the strong fluorescence quenching observed in these crystals. This adds weight to the argument that the same dissipative pathway is responsible for in vivo NPQ.

2.
J Phys Chem B ; 115(18): 5201-11, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21090793

ABSTRACT

We report a femtosecond transient absorption spectroscopic study on the (6, 5) single-walled carbon nanotubes and the (7, 5) inner tubes of a dominant double-walled carbon nanotube species. We found that the dynamics of exciton relaxation probed at the first transition-allowed state (E(11)) of a given tube type exhibits a markedly slower decay when the second transition-allowed state (E(22)) is excited than that measured by exciting its first transition-allowed state (E(11)). A linear intensity dependence of the maximal amplitude of the transient absorption signal is found for the E(22) excitation, whereas the corresponding amplitude scales linearly with the square root of the E(11) excitation intensity. Theoretical modeling of these experimental findings was performed by developing a continuum model and a stochastic model with explicit consideration of the annihilation of coherent excitons. Our detailed numerical simulations show that both models can reproduce reasonably well the initial portion of decay kinetics measured upon the E(22) and E(11) excitation of the chosen tube species, but the stochastic model gives qualitatively better agreement with the intensity dependence observed experimentally than those obtained with the continuum model.


Subject(s)
Nanotubes, Carbon/chemistry , Absorption , Algorithms , Kinetics , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL
...