Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 14(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35884386

ABSTRACT

The taxane family of microtubule poisons and chemotherapeutics have been studied for over 50 years and are among the most frequently used antineoplastic agents today. Still, limited research exists characterizing taxane-induced sex-specific mechanisms of action and toxicities in cancer and non-cancerous tissue. Such research is important to advance cancer treatment outcomes as well as to address clinically observed sex-differences in short- and long-term taxane-induced toxicities that have disproportionate effects on female and male cancer patients. To gain more insight into these underlying differences between the sexes, the following review draws from pre-clinical and clinical paclitaxel and taxane oncology literature, examines sex-discrepancies, and highlights uncharacterized sex-dependent mechanisms of action and clinical outcomes. To our knowledge, this is the first literature review to provide a current overview of the basic and clinical sex dimorphisms of taxane-induced effects. Most importantly, we hope to provide a starting point for improving and advancing sex-specific personalized chemotherapy and cancer treatment strategies as well as to present a novel approach to review sex as a biological variable in basic and clinical biology.

2.
Stem Cells Transl Med ; 9(1): 93-105, 2020 01.
Article in English | MEDLINE | ID: mdl-31568685

ABSTRACT

Cranial radiotherapy, although beneficial for the treatment of brain tumors, inevitably leads to normal tissue damage that can induce unintended neurocognitive complications that are progressive and debilitating. Ionizing radiation exposure has also been shown to compromise the structural integrity of mature neurons throughout the brain, an effect believed to be at least in part responsible for the deterioration of cognitive health. Past work has shown that cranially transplanted human neural stem cells (hNSCs) or their extracellular vesicles (EVs) afforded long-term beneficial effects on many of these cognitive decrements. To provide additional insight into the potential neuroprotective mechanisms of cell-based regenerative strategies, we have analyzed hippocampal neurons for changes in structural integrity and synaptic remodeling after unilateral and bilateral transplantation of hNSCs or EVs derived from those same cells. Interestingly, hNSCs and EVs similarly afforded protection to host neurons, ameliorating the impact of irradiation on dendritic complexity and spine density for neurons present in both the ipsilateral and contralateral hippocampi 1 month following irradiation and transplantation. These morphometric improvements were accompanied by increased levels of glial cell-derived growth factor and significant attenuation of radiation-induced increases in postsynaptic density protein 95 and activated microglia were found ipsi- and contra-lateral to the transplantation sites of the irradiated hippocampus treated with hNSCs or hNSC-derived EVs. These findings document potent far-reaching neuroprotective effects mediated by grafted stem cells or EVs adjacent and distal to the site of transplantation and support their potential as therapeutic agents to counteract the adverse effects of cranial irradiation.


Subject(s)
Cranial Irradiation/adverse effects , Extracellular Vesicles/transplantation , Neural Stem Cells/transplantation , Animals , Cranial Irradiation/methods , Humans , Male , Rats , Rats, Nude
3.
Radiat Res ; 189(4): 345-353, 2018 04.
Article in English | MEDLINE | ID: mdl-29351056

ABSTRACT

Clinical management of primary and secondary central nervous system (CNS) malignancies frequently includes radiotherapy to forestall tumor growth and recurrence after surgical resection. While cranial radiotherapy remains beneficial, adult and pediatric brain tumor survivors suffer from a wide range of debilitating and progressive cognitive deficits. Although this has been recognized as a significant problem for decades, there remains no clinical recourse for the unintended neurocognitive sequelae associated with these types of cancer treatments. In previous work, multiple mechanisms have been identified that contribute to radiation-induced cognitive dysfunction, including the inhibition of neurogenesis caused by the depletion of radiosensitive populations of stem and progenitor cells in the hippocampus. To explore the potential neuroprotective properties of a pro-neurogenic compound NSI-189, Long-Evans rats were subjected to a clinically relevant fractionated irradiation protocol followed by four weeks of NSI-189 administered daily by oral gavage. Animals were then subjected to five different behavioral tasks followed by an analysis of neurogenesis, hippocampal volume and neuroinflammation. Irradiated cohorts manifested significant behavioral decrements on all four spontaneous exploration tasks. Importantly, NSI-189 treatment resulted in significantly improved performance in four of these tasks: novel place recognition, novel object recognition, object in place and temporal order. In addition, there was a trend of improved performance in the contextual phase of the fear conditioning task. Importantly, enhanced cognition in the NSI-189-treated cohort was found to persist one month after the cessation of drug treatment. These neurocognitive benefits of NSI-189 coincided with a significant increase in neurogenesis and a significant decrease in the numbers of activated microglia compared to the irradiated cohort that was given vehicle alone. The foregoing changes were not accompanied by major changes in hippocampal volume. These data demonstrate that oral administration of a pro-neurogenic compound exhibiting anti-inflammatory indications could impart long-term neurocognitive benefits in the irradiated brain.


Subject(s)
Aminopyridines/administration & dosage , Aminopyridines/pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Piperazines/administration & dosage , Piperazines/pharmacology , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/etiology , Administration, Oral , Animals , Cognition/drug effects , Cognition/radiation effects , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Conditioning, Psychological/drug effects , Conditioning, Psychological/radiation effects , Cranial Irradiation/adverse effects , Fear/psychology , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/physiopathology , Hippocampus/radiation effects , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Organ Size/drug effects , Organ Size/radiation effects , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/physiopathology , Rats , Recognition, Psychology/drug effects , Recognition, Psychology/radiation effects
5.
Sci Rep ; 6: 34774, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27721383

ABSTRACT

The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain.


Subject(s)
Cognitive Dysfunction/etiology , Cosmic Radiation/adverse effects , Neurons/radiation effects , Animals , Behavior, Animal/radiation effects , Cell Count , Dendrites/pathology , Dendrites/radiation effects , Disks Large Homolog 4 Protein/metabolism , Dose-Response Relationship, Radiation , Inflammation/etiology , Male , Mice, Transgenic , Neurons/pathology , Prefrontal Cortex/cytology , Prefrontal Cortex/radiation effects , Rats, Wistar
6.
Front Mol Neurosci ; 9: 42, 2016.
Article in English | MEDLINE | ID: mdl-27375429

ABSTRACT

Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered purine metabolism and astrogliosis, thereby linking the importance of adenosine homeostasis in the brain to radiation injury.

7.
Proc Natl Acad Sci U S A ; 113(17): 4836-41, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27044087

ABSTRACT

Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment.


Subject(s)
Brain Damage, Chronic/therapy , Cell-Derived Microparticles/transplantation , Cognition Disorders/therapy , Cranial Irradiation/adverse effects , Hippocampus/physiology , Neural Stem Cells/ultrastructure , Radiation Injuries, Experimental/therapy , Amygdala/ultrastructure , Animals , Brain Damage, Chronic/etiology , Cells, Cultured , Cognition Disorders/etiology , Genes, Reporter , Habituation, Psychophysiologic/physiology , Heterografts , Hippocampus/ultrastructure , Humans , Male , Microglia/physiology , Neocortex/ultrastructure , Rats , Rats, Nude
8.
Environ Mol Mutagen ; 57(5): 364-71, 2016 06.
Article in English | MEDLINE | ID: mdl-26996825

ABSTRACT

Growing evidence suggests that radiation-induced oxidative stress directly affects a wide range of biological changes with an overall negative impact on CNS function. In the past we have demonstrated that transgenic mice over-expressing human catalase targeted to the mitochondria (MCAT) exhibit a range of neuroprotective phenotypes following irradiation that include improved neurogenesis, dendritic complexity, and cognition. To determine the extent of the neuroprotective phenotype afforded by MCAT expression in different hippocampal regions, we analyzed subiculum neurons for changes in neuronal structure and synaptic integrity after exposure to low dose (0.5 Gy) 150 MeV proton irradiation. One month following irradiation of WT and MCAT mice, a range of morphometric parameters were quantified along Golgi-Cox impregnated neurons. Compared with WT mice, subiculum neurons from MCAT mice exhibited increased trends (albeit not statistically significant) toward increased dendritic complexity in both control and irradiated cohorts. However, Sholl analysis of MCAT mice revealed significantly increased arborization of the distal dendritic tree, indicating a protective effect on secondary and tertiary branching. Interestingly, radiation-induced increases in postsynaptic density protein (PSD-95) puncta were not as pronounced in MCAT compared with WT mice, and were significantly lower after the 0.5 Gy dose. As past data has linked radiation exposure to reduced dendritic complexity, elevated PSD-95 and impaired cognition, reductions in mitochondrial oxidative stress have proven useful in ameliorating many of these radiation-induced sequelae. Data presented here shows similar trends, and again points to the potential benefits of reducing oxidative stress in the brain to attenuate radiation injury. Environ. Mol. Mutagen. 57:364-371, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Catalase/metabolism , Hippocampus/radiation effects , Mitochondria/radiation effects , Neuronal Plasticity/radiation effects , Neurons/radiation effects , Protons , Animals , Catalase/genetics , Cranial Irradiation , Disks Large Homolog 4 Protein , Guanylate Kinases/metabolism , Hippocampus/enzymology , Hippocampus/metabolism , Humans , Imaging, Three-Dimensional , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/enzymology , Neurons/enzymology , Neurons/metabolism , Radiation Dosage
9.
Sci Adv ; 1(4)2015 May 01.
Article in English | MEDLINE | ID: mdl-26180843

ABSTRACT

As NASA prepares for the first manned spaceflight to Mars, questions have surfaced concerning the potential for increased risks associated with exposure to the spectrum of highly energetic nuclei that comprise galactic cosmic rays. Animal models have revealed an unexpected sensitivity of mature neurons in the brain to charged particles found in space. Astronaut autonomy during long-term space travel is particularly critical as is the need to properly manage planned and unanticipated events, activities that could be compromised by accumulating particle traversals through the brain. Using mice subjected to space-relevant fluences of charged particles, we show significant cortical- and hippocampal-based performance decrements 6 weeks after acute exposure. Animals manifesting cognitive decrements exhibited marked and persistent radiation-induced reductions in dendritic complexity and spine density along medial prefrontal cortical neurons known to mediate neurotransmission specifically interrogated by our behavioral tasks. Significant increases in postsynaptic density protein 95 (PSD-95) revealed major radiation-induced alterations in synaptic integrity. Impaired behavioral performance of individual animals correlated significantly with reduced spine density and trended with increased synaptic puncta, thereby providing quantitative measures of risk for developing cognitive decrements. Our data indicate an unexpected and unique susceptibility of the central nervous system to space radiation exposure, and argue that the underlying radiation sensitivity of delicate neuronal structure may well predispose astronauts to unintended mission-critical performance decrements and/or longer-term neurocognitive sequelae.

10.
Redox Biol ; 5: 24-32, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25800120

ABSTRACT

Exposure to the space radiation environment poses risks for a range of deleterious health effects due to the unique types of radiation encountered. Galactic cosmic rays are comprised of a spectrum of highly energetic nuclei that deposit densely ionizing tracks of damage along the particle trajectory. These tracks are distinct from those generated by the more sparsely ionizing terrestrial radiations, and define the geometric distribution of the complex cellular damage that results when charged particles traverse the tissues of the body. The exquisite radiosensitivity of multipotent neural stem and progenitor cells found within the neurogenic regions of the brain predispose the central nervous system to elevated risks for radiation induced sequelae. Here we show that human neural stem cells (hNSC) exposed to different charged particles at space relevant fluences exhibit significant and persistent oxidative stress. Radiation induced oxidative stress was found to be most dependent on total dose rather than on the linear energy transfer of the incident particle. The use of redox sensitive fluorogenic dyes possessing relative specificity for hydroxyl radicals, peroxynitrite, nitric oxide (NO) and mitochondrial superoxide confirmed that most irradiation paradigms elevated reactive oxygen and nitrogen species (ROS and RNS, respectively) in hNSC over a 1 week interval following exposure. Nitric oxide synthase (NOS) was not the major source of elevated nitric oxides, as the use of NOS inhibitors had little effect on NO dependent fluorescence. Our data provide extensive evidence for the capability of low doses of charged particles to elicit marked changes in the metabolic profile of irradiated hNSC. Radiation induced changes in redox state may render the brain more susceptible to the development of neurocognitive deficits that could affect an astronaut's ability to perform complex tasks during extended missions in deep space.


Subject(s)
Oxidative Stress/radiation effects , Radiation, Ionizing , Adenosine Triphosphate/metabolism , Cell Survival/radiation effects , Cells, Cultured , Dose-Response Relationship, Radiation , Humans , Hydroxyl Radical/metabolism , Linear Energy Transfer , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Peroxynitrous Acid/metabolism , Superoxides/metabolism
11.
Cancer Res ; 75(4): 676-86, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25687405

ABSTRACT

The frequent use of chemotherapy to combat a range of malignancies can elicit severe cognitive dysfunction often referred to as "chemobrain," a condition that can persist long after the cessation of treatment in as many as 75% of survivors. Although cognitive health is a critical determinant of therapeutic outcome, chemobrain remains an unmet medical need that adversely affects quality of life in pediatric and adult cancer survivors. Using a rodent model of chemobrain, we showed that chronic cyclophosphamide treatment induced significant performance-based decrements on behavioral tasks designed to interrogate hippocampal and cortical function. Intrahippocampal transplantation of human neural stem cells resolved all cognitive impairments when animals were tested 1 month after the cessation of chemotherapy. In transplanted animals, grafted cells survived (8%) and differentiated along neuronal and astroglial lineages, where improved cognition was associated with reduced neuroinflammation and enhanced host dendritic arborization. Stem cell transplantation significantly reduced the number of activated microglia after cyclophosphamide treatment in the brain. Granule and pyramidal cell neurons within the dentate gyrus and CA1 subfields of the hippocampus exhibited significant reductions in dendritic complexity, spine density, and immature and mature spine types following chemotherapy, adverse effects that were eradicated by stem cell transplantation. Our findings provide the first evidence that cranial transplantation of stem cells can reverse the deleterious effects of chemobrain, through a trophic support mechanism involving the attenuation of neuroinflammation and the preservation host neuronal architecture.


Subject(s)
Cognition Disorders/therapy , Cyclophosphamide/adverse effects , Neoplasms/drug therapy , Neural Stem Cells/transplantation , Stem Cell Transplantation , Animals , Behavior, Animal/drug effects , Cognition Disorders/chemically induced , Cyclophosphamide/administration & dosage , Disease Models, Animal , Hippocampus/pathology , Hippocampus/transplantation , Humans , Mice , Neoplasms/pathology , Neurons/drug effects , Neurons/pathology , Quality of Life
12.
Antioxid Redox Signal ; 22(1): 78-91, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-24949841

ABSTRACT

AIMS: Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. RESULTS: Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. INNOVATION: Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. CONCLUSION: Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain.


Subject(s)
Catalase/metabolism , Catalase/physiology , Cognition Disorders/metabolism , Cognition Disorders/prevention & control , Animals , Catalase/genetics , Cognition Disorders/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/metabolism , Synaptosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...