Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr B Analyt Technol Biomed Life Sci ; 852(1-2): 409-19, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17339136

ABSTRACT

High-level expression of recombinant proteins in Escherichia coli frequently leads to the formation of insoluble protein aggregates, termed inclusion bodies. In order to recover a native protein from inclusion bodies, various protein refolding techniques have been developed. Column-based refolding methods and refolding in aqueous two-phase systems are often an attractive alternative to dilution refolding due to simultaneous purification and improved refolding yields. In this work, the effect of surface histidine mutations and their number on the partitioning and refolding of recombinant human granulocyte-colony stimulating factor Cys17Ser variant (rhG-CSF (C17S)) from solubilized inclusion bodies in aqueous two-phase systems polyethylene glycol (PEG)-dextran, containing metal ions, chelated by dye Light Resistant Yellow 2KT (LR Yellow 2KT)-PEG derivative, was investigated. Human G-CSF is a growth factor that regulates the production of mature neutrophilic granulocytes from the precursor cells. Initially, the role of His156 and His170 residues in the interaction of rhG-CSF (C17S) with Cu(II), Ni(II) and Hg(II) ions, chelated by LR Yellow 2KT-PEG, was investigated at pH 7.0 by means of affinity partitioning of purified, correctly folded rhG-CSF (C17S) mutants. It was determined that both His156 and His170 mutations reduced the affinity of rhG-CSF (C17S) for chelated Cu(II) ions at pH 7.0. His170 mutation significantly reduced the affinity of protein for chelated Ni(II) ions. However, histidine mutations had only a small effect on the affinity of protein for Hg(II) ions. The influence of His156 and His170 mutations on the refolding of rhG-CSF (C17S) from solubilized inclusion bodies in aqueous two-phase systems PEG-dextran, containing chelated Ni(II) and Hg(II) ions, was investigated. Reversible interaction of protein mutants with chelated metal ions was used for refolding in aqueous two-phase systems. Both histidine mutations resulted in a significant decrease of protein refolding efficiency in two-phase systems containing chelated Ni(II) ions, while in the presence of chelated Hg(II) ions their effect on protein refolding was negligible. Refolding studies of rhG-CSF variants with different number of histidine mutations revealed that a direct correlation exists between the number of surface histidine residues and refolding efficiency of rhG-CSF variant in two-phase systems containing chelated Ni(II) ions. This method of protein refolding in aqueous two-phase systems containing chelated metal ions should be applicable to other recombinant proteins that contain accessible histidine residues.


Subject(s)
Chelating Agents/chemistry , Cysteine/chemistry , Granulocyte Colony-Stimulating Factor/metabolism , Histidine/genetics , Metals/chemistry , Mutation , Serine/chemistry , Animals , Cell Line, Tumor , Electrophoresis, Polyacrylamide Gel , Granulocyte Colony-Stimulating Factor/chemistry , Granulocyte Colony-Stimulating Factor/genetics , Granulocyte Colony-Stimulating Factor/isolation & purification , Mice , Protein Folding , Recombinant Proteins , Water
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 786(1-2): 17-32, 2003 Mar 25.
Article in English | MEDLINE | ID: mdl-12650998

ABSTRACT

Site directed mutagenesis of Cys17-->Ser17 form of recombinant human granulocyte colony stimulating factor (rhG-CSF C17S) for sequential replacing of surface His(43) and His(52) with alanine was used to identify residues critical for the protein interaction with metal ions, in particular Ni(2+) chelated by dye Light Resistant Yellow 2 KT (LR Yellow 2KT)-polyethyleneglycol (PEG), and refolding after partitioning of inclusion bodies in aqueous two-phase systems. Strong binding of rhG-CSF (C17S) to PEG-LR Yellow 2KT-Cu(II) complex allowed for the adoption of affinity chromatography on Sepharose-LR Yellow 2KT-Cu(II) that appeared to be essential for the rapid isolation of mutated forms of rhG-CSF. Efficiency of that purification stage is exemplified by isolation of rhG-CSF (C17S, H43A) and rhG-CSF (C17S, H43A, H52A) mutants in correctly folded and highly purified state. Affinity partitioning of rhG-CSF histidine mutants was studied in aqueous two-phase systems containing Cu(II), Ni(II) and Hg(II) chelated by LR Yellow 2KT-PEG at pH 7.0 and Cu(II)-at pH 5.0. It was determined, that affinity of rhG-CSF mutants for metal ions decreased in the order of C17S>C17S, H43A>C17S, H43A, H52A for Cu(II), and C17S=C17S, H43A>C17S, H43A, H52A for Ni(II) ions, while affinity of all rhG-CSF mutants for Hg(II) ions was of the same order of magnitude. Influence of His(43) and His(52) mutation on protein refolding was studied by partitioning of the respective inclusion body extract in aqueous two-phase systems containing Ni(II) and Hg(II) ions. Data on rhG-CSF histidine mutant partitioning and refolding indicated, that His(52) mutation is crucial for the strength of protein interaction with chelated Ni(II) ions and refolding efficiency.


Subject(s)
Chelating Agents/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Histidine/genetics , Recombinant Proteins/metabolism , Chromatography, Affinity , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Granulocyte Colony-Stimulating Factor/chemistry , Granulocyte Colony-Stimulating Factor/genetics , Histidine/chemistry , Humans , Hydrogen-Ion Concentration , Imidazoles/chemistry , Isoelectric Focusing , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...