Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 222: 44-53, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26341964

ABSTRACT

A species' range can be thought of as a manifestation of the ecological niche in space. Within a niche, evolution has resulted in traits that maximize fitness. Across millennia, natural oscillations in temperature have caused shifts in the geographic location of appropriate habitat and with corresponding changes in species' ranges. Contemporary climate change and human disturbance may lead to rapid range expansion or contractions with largely unknown consequences. Birds provide an excellent case study of this phenomenon with some taxa expanding range and others contracting even to the point of extinction. What leads some populations to expand while others contract? Are there physiological and behavioral attributes of "pioneers" at the forefront of a range shift/expansion? The concept of allostasis provides a framework with which to begin to evaluate when a species will be able to successfully expand into new habitat. This tool allows the integration of normal energetic demands (e.g. wear and tear of daily and seasonal routines) with novel challenges posed by unfamiliar and human altered environments. Allostasis is particularly attractive because it allows assessment of how individual phenotypes may respond differentially to changing environments. Here, we use allostasis to evaluate what characteristics of individuals and their environment permit successful range expansion. Understanding variation in the regulatory mechanisms that influence response to a novel environment will be fundamental for understanding the phenotypes of pioneers.


Subject(s)
Allostasis/physiology , Climate Change , Glucocorticoids/metabolism , Animals , Biological Evolution , Ecosystem , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...