Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 11(36): 32815-32825, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31408311

ABSTRACT

In this study, we synthesize two layered and amorphous structures of germanium phosphide (GeP5) and compare their electrochemical performances to better understand the role of layered, crystalline structures and their ability to control large volume expansions. We compare the results obtained with those of previous, conventional viewpoints addressing the effectiveness of amorphous phases in traditional anodes (Si, Ge, and Sn) to hinder electrode pulverization. By means of both comprehensive experimental characterizations and density functional theory calculations, we demonstrate that layered, crystalline GeP5 in a hybrid structure with multiwalled carbon nanotubes exhibits exceptionally good transport of electrons and electrolyte ions and tolerance to extensive volume changes and provides abundant reaction sites relative to an amorphous structure, resulting in a superior solid-electrolyte interphase layer and unprecedented initial Coulombic efficiencies in both Li-ion and Na-ion batteries. Moreover, the hybrid delivers excellent rate-capability (symmetric and asymmetric) performance and remarkable reversible discharge capacities, even at high current rates, realizing ultradurable cycles in both applications. The findings of this investigation are expected to offer insights into the design and application of layered materials in various devices.

2.
Nano Lett ; 17(12): 7869-7877, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29144142

ABSTRACT

Battery performance, such as the rate capability and cycle stability of lithium transition metal oxides, is strongly correlated with the surface properties of active particles. For lithium-rich layered oxides, transition metal segregation in the initial state and migration upon cycling leads to a significant structural rearrangement, which eventually degrades the electrode performance. Here, we show that a fine-tuning of surface chemistry on the particular crystal facet can facilitate ionic diffusion and thus improve the rate capability dramatically, delivering a specific capacity of ∼110 mAh g-1 at 30C. This high rate performance is realized by creating a nanoscale zirconium-abundant rock-salt-like surface phase epitaxially grown on the layered bulk. This surface layer is spontaneously formed on the Li+-diffusive crystallographic facets during the synthesis and is also durable upon electrochemical cycling. As a result, Li-ions can move rapidly through this nanoscale surface layer over hundreds of cycles. This study provides a promising new strategy for designing and preparing a high-performance lithium-rich layered oxide cathode material.

3.
Nanotechnology ; 28(25): 255401, 2017 Jun 23.
Article in English | MEDLINE | ID: mdl-28548050

ABSTRACT

Silicon (Si) has a large theoretical capacity of 4200 mAhg-1 and has great potential as a high-performance anode material for Li ion batteries (LIBs). Meanwhile, nanostructures can exploit the potential of Si and, accordingly, many zero-dimensional (0D) and one-dimensional (1D) Si nanostructures have been studied. Herein, we report on two-dimensional (2D) Si nanostructures, Si nanosheets (SiNSs), as anodes for LIBs. These 2D Si nanostructures, with a thickness as low 5 nm and widths of several micrometers, show reversible crystalline-amorphous phase transformations with the lithi-/delithiation by the dimensionality of morphology and large surface area. The reversible crystalline-amorphous phase transformation provides a structural stability of Li+ insertions and makes SiNSs promising candidates for reliable high-performance LIBs anode materials.

4.
Sci Rep ; 7: 42237, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28169373

ABSTRACT

The growing demand for lithium-ion batteries (LIBs) requires investigation of high-performance electrode materials with the advantages of being environmentally friendly and cost-effective. In this study, a nanocomposite of open-pyrochlore-structured FeF3·0.5H2O and reduced graphene oxide (RGO) is synthesized for use as a high-performance cathode in LIBs, where RGO provides high electrical conductivity to the composite material. The morphology of the composite shows that FeF3·0.5H2O spheres are embedded into RGO layers and high-resolution TEM image shows that those spheres are composed of primary nanoparticles with a size of ~5 nm. The cycling performance indicates that the composite electrode delivers an initial high discharge capacity of 223 mAh g-1 at 0.05 C, a rate capability up to a high C-rate of 10 C (47 mAh g-1) and stable cycle performance at 0.05 C (145 mAh g-1 after 100 cycles) and 0.2 C (93 mAh g-1 after 100 cycles) while maintaining high electrochemical reversibility. Furthermore, the responsible electrochemical reaction is investigated using in-situ XRD and synchrotron-based X-ray absorption spectroscopy (XAS), and the XRD results show that FeF3·0.5H2O transitions to an amorphous-like phase through a lithiation process. However, a reversible oxidation change of Fe3+ ↔ Fe2+ is identified by the XAS results.

5.
Sci Rep ; 7: 42238, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28165041

ABSTRACT

The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles.

6.
ChemSusChem ; 9(20): 2948-2956, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27650037

ABSTRACT

The reaction mechanism of α-MnO2 having 2×2 tunnel structure with zinc ions in a zinc rechargeable battery, employing an aqueous zinc sulfate electrolyte, was investigated by in situ monitoring structural changes and water chemistry alterations during the reaction. Contrary to the conventional belief that zinc ions intercalate into the tunnels of α-MnO2 , we reveal that they actually precipitate in the form of layered zinc hydroxide sulfate (Zn4 (OH)6 (SO4 )⋅5 H2 O) on the α-MnO2 surface. This precipitation occurs because unstable trivalent manganese disproportionates and is dissolved in the electrolyte during the discharge process, resulting in a gradual increase in the pH value of the electrolyte. This causes zinc hydroxide sulfate to crystallize from the electrolyte on the electrode surface. During the charge process, the pH value of the electrolyte decreases due to recombination of manganese on the cathode, leading to dissolution of zinc hydroxide sulfate back into the electrolyte. An analogous phenomenon is also observed in todorokite, a manganese dioxide polymorph with 3×3 tunnel structure that is an indication for the critical role of pH changes of the electrolyte in the reaction mechanism of this battery system.


Subject(s)
Electric Power Supplies , Electrolytes/chemistry , Hydrogen-Ion Concentration , Zinc/chemistry , Crystallography, X-Ray , Electrodes , Manganese Compounds/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Oxides/chemistry , Spectrometry, X-Ray Emission , X-Ray Diffraction
7.
ACS Appl Mater Interfaces ; 8(24): 15422-9, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27248477

ABSTRACT

The surface of olivine NaFePO4 was modified with polythiophene (PTh) to develop a high-performance cathode material for use in Na-ion batteries. The Rietveld refinement results of the prepared material reveal that PTh-coated NaFePO4 belongs to a space group of Pnma with lattice parameters of a = 10.40656 Å, b = 6.22821 Å, and c = 4.94971 Å. Uncoated NaFePO4 delivers a discharge capacity of 108 mAh g(-1) at a current density of 10 mA g(-1) within a voltage range of 2.2-4.0 V. Conversely, the PTh-coated NaFePO4 electrode exhibits significantly improved electrochemical performance, where it exhibits a discharge capacity of 142 mAh g(-1) and a stable cycle life over 100 cycles, with a capacity retention of 94%. The NaFePO4/PTh electrode also exhibits satisfactory performance at high current densities, and reversible capacities of 70 mAh g(-1) at 150 mA g(-1) and 42 mAh g(-1) at 300 mA g(-1) are obtained compared with negligible capacities without coating. The related electrochemical reaction mechanism has been investigated using in situ X-ray absorption spectroscopy (XAS), which revealed a systematic change of Fe valence and reversible contraction/expansion of Fe-O octahedra upon desodiation/sodiation. The ex situ X-ray diffraction (XRD) results suggest that the deintercalation in NaFePO4/PTh electrodes proceeds through a stable intermediate phase and the lattice parameters show a reversible contraction/expansion of unit cell during cycling.

8.
ACS Appl Mater Interfaces ; 8(9): 6032-9, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26889957

ABSTRACT

There is a significant interest to develop high-performance and cost-effective electrode materials for next-generation sodium ion batteries. Herein, we report a facile synthesis method for nanosized V2O5/C composite cathodes and their electrochemical performance as well as energy storage mechanism. The composite exhibits a discharge capacity of 255 mAh g(-1) at a current density of 0.05 C, which surpasses that of previously reported layered oxide materials. Furthermore, the electrode shows good rate capability; discharge capacity of 160 mAh g(-1) at a current density of 1 C. The reaction mechanism of V2O5 upon sodium insertion/extraction is investigated using ex situ X-ray diffraction (XRD) and synchrotron based near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Ex situ XRD result of the fully discharged state reveals the appearance of NaV2O5 as a major phase with minor Na2V2O5 phase. Upon insertion of sodium into the array of parallel ladders of V2O5, it was confirmed that lattice parameter of c is increased by 9.09%, corresponding to the increase in the unit-cell volume of 9.2%. NEXAFS results suggest that the charge compensation during de/sodiation process accompanied by the reversible changes in the oxidation state of vanadium (V(4+) ↔ V(5+)).

9.
ACS Appl Mater Interfaces ; 8(1): 363-70, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26645115

ABSTRACT

In this work, we report the electrochemical properties of 0.5Li2MnO3·0.25LiNi0.5Co0.2Mn0.3O2·0.25LiNi0.5Mn1.5O4 and 0.333Li2MnO3·0.333LiNi0.5Co0.2Mn0.3O2·0.333LiNi0.5Mn1.5O4 layered-layered-spinel (L*LS) cathode materials prepared by a high-energy ball-milling process. Our L*LS cathode materials can deliver a large and stable capacity of ∼200 mAh g(-1) at high voltages up to 4.9 V, and do not show the anomalous capacity increase upon cycling observed in previously reported three-component cathode materials synthesized with different routes. Furthermore, we have performed synchrotron-based in situ X-ray diffraction measurements and found that there are no significant structural distortions during charge/discharge runs. Lastly, we carry out (opt-type) van der Waals-corrected density functional theory (DFT) calculations to explain the enhanced cycle characteristics and reduced phase transformations in our ball-milled L*LS cathode materials. Our simple synthesis method brings a new perspective on the use of the high-power L*LS cathodes in practical devices.

10.
Chem Commun (Camb) ; 51(45): 9265-8, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25920416

ABSTRACT

The intercalation mechanism of zinc ions into 2 × 2 tunnels of an α-MnO2 cathode for rechargeable zinc batteries was revealed. It involves a series of single and two-phase reaction steps and produces buserite, a layered compound with an interlayer spacing of 11 Å as a discharge product.

11.
J Am Chem Soc ; 136(46): 16116-9, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25364815

ABSTRACT

We have conducted extensive theoretical and experimental investigations to unravel the origin of the electrochemical properties of hybrid Mg(2+)/Li(+) rechargeable batteries at the atomistic and macroscopic levels. By revealing the thermodynamics of Mg(2+) and Li(+) co-insertion into the Mo6S8 cathode host using density functional theory calculations, we show that there is a threshold Li(+) activity for the pristine Mo6S8 cathode to prefer lithiation instead of magnesiation. By precisely controlling the insertion chemistry using a dual-salt electrolyte, we have enabled ultrafast discharge of our battery by achieving 93.6% capacity retention at 20 C and 87.5% at 30 C, respectively, at room temperature.

12.
Sci Rep ; 4: 6066, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25317571

ABSTRACT

Zn-ion batteries are emerging energy storage systems eligible for large-scale applications, such as electric vehicles. These batteries consist of totally environmentally-benign electrode materials and potentially manufactured very economically. Although Zn/α-MnO2 systems produce high energy densities of 225 Wh kg(-1), larger than those of conventional Mg-ion batteries, they show significant capacity fading during long-term cycling and suffer from poor performance at high current rates. To solve these problems, the concrete reaction mechanism between α-MnO2 and zinc ions that occur on the cathode must be elucidated. Here, we report the intercalation mechanism of zinc ions into α-MnO2 during discharge, which involves a reversible phase transition of MnO2 from tunneled to layered polymorphs by electrochemical reactions. This transition is initiated by the dissolution of manganese from α-MnO2 during discharge process to form layered Zn-birnessite. The original tunneled structure is recovered by the incorporation of manganese ions back into the layers of Zn-birnessite during charge process.

13.
ACS Appl Mater Interfaces ; 6(17): 15140-7, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25101895

ABSTRACT

In this work, we take advantage of in situ transmission electron microscopy (TEM) to investigate thermally induced decomposition of the surface of Li(x)Ni(0.8)Co(0.15)Al(0.05)O2 (NCA) cathode materials that have been subjected to different states of charge (SOC). While uncharged NCA is stable up to 400 °C, significant changes occur in charged NCA with increasing temperature. These include the development of surface porosity and changes in the oxygen K-edge electron energy loss spectra, with pre-edge peaks shifting to higher energy losses. These changes are closely related to O2 gas released from the structure, as well as to phase changes of NCA from the layered structure to the disordered spinel structure, and finally to the rock-salt structure. Although the temperatures where these changes initiate depend strongly on the state of charge, there also exist significant variations among particles with the same state of charge. Notably, when NCA is charged to x = 0.33 (the charge state that is the practical upper limit voltage in most applications), the surfaces of some particles undergo morphological and oxygen K-edge changes even at temperatures below 100 °C, a temperature that electronic devices containing lithium ion batteries (LIB) can possibly see during normal operation. Those particles that experience these changes are likely to be extremely unstable and may trigger thermal runaway at much lower temperatures than would be usually expected. These results demonstrate that in situ heating experiments are a unique tool not only to study the general thermal behavior of cathode materials but also to explore particle-to-particle variations, which are sometimes of critical importance in understanding the performance of the overall system.

14.
Sci Rep ; 4: 4847, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24784478

ABSTRACT

Core/shell-like nanostructured xLi2MnO3·(1-x)LiMO2 (M = Ni, Co, Mn) composite cathode materials are successfully synthesized through a simple solid-state reaction using a mechanochemical ball-milling process. The LiMO2 core is designed to have a high-content of Ni, which increases the specific capacity. The detrimental surface effects arising from the high Ni-content are countered by the Li2MnO3 shell, which stabilizes the nanoparticles. The electrochemical performances and thermal stabilities of the synthesized nanocomposites are compared with those of bare LiMO2. In particular, the results of time-resolved X-ray diffraction (TR-XRD) analyses of xLi2MnO3·(1-x)LiMO2 nanocomposites as well as their differential scanning calorimetry (DSC) profiles demonstrate that the Li2MnO3 shell is effective in stabilizing the LiMO2 core at high temperatures, making the nanocomposites highly suitable from a safety viewpoint.

15.
Sci Rep ; 4: 4350, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24618982

ABSTRACT

Li4Ti5O12 (LTO) is recognized as being one of the most promising anode materials for high power Li ion batteries; however, its insulating nature is a major drawback. In recent years, a simple thermal treatment carried out in a reducing atmosphere has been shown to generate oxygen vacancies (VO) for increasing the electronic conductivity of this material. Such structural defects, however, lead to re-oxidization over time, causing serious deterioration in anode performance. Herein, we report a unique approach to increasing the electronic conductivity with simultaneous improvement in structural stability. Doping of LTO with Mo in a reducing atmosphere resulted in extra charges at Ti sites caused by charge compensation by the homogeneously distributed Mo(6+) ions, being delocalized over the entire lattice, with fewer oxygen vacancies (VO) generated. Using this simple method, a marked increase in electronic conductivity was achieved, in addition to an extremely high rate capability, with no performance deterioration over time.

16.
Chem Commun (Camb) ; 49(94): 11107-9, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-24145813

ABSTRACT

Herein, we report a cheap and simple approach to solve the polysulfide dissolution problem in lithium sulfur batteries. It was interestingly revealed that a simple insertion of acetylene black mesh enabled us to obtain the capacity of 1491 mA h g(-1) at initial discharge and 1062 mA h g(-1) after 50 cycles.

17.
Phys Chem Chem Phys ; 15(40): 17626-35, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24036916

ABSTRACT

In this study, V-doped NiO materials were prepared by simple coprecipitation and thermal decomposition, and the effect of the vanadium content on the morphology, structural properties, electrochemical behavior, and cycling stability of NiO upon oxidation and reduction was analyzed for supercapacitor applications. The results show an improvement in the capacitive characteristics of the V-doped NiO, including increases in the specific capacitance after the addition of just 1.0, 2.0, and 4.0 at% V. All VxNi1-xO electrodes (x = 0.01, 0.02, 0.04) exhibited higher specific capacitances of 371.2, 365.7, and 386.2 F g(-1) than that of pure NiO (303.2 F g(-1)) at a current density of 2 A g(-1) after 500 cycles, respectively. The V0.01Ni0.99O electrode showed good capacitance retention of 73.5% at a current density of 2 A g(-1) for more than 500 cycles in a cycling test. Importantly, the rate capability of the V0.01Ni0.99O electrode was maintained at about 84.7% as discharge current density was increased from 0.5 A g(-1) to 4 A g(-1).

18.
J Nanosci Nanotechnol ; 11(5): 4389-93, 2011 May.
Article in English | MEDLINE | ID: mdl-21780463

ABSTRACT

The binary self-assembled monolayers (SAMs) of di-(3-aminopropyl)-viologen (DAPV) and methylviologen (MV) molecules on indium tin oxide (ITO) were prepared by dipping the DAPV SAMs/ITO substrates into MV solution. The DAPV-MV SAM films were characterized by UV-vis. absorption spectroscopy, Rutherford backscattering spectroscopy, and cyclic voltammetry. Optical band gap, lowest unoccupied molecular orbital, and highest occupied molecular orbital of DAPV-MV SAMs were measured to be 1.6, -4.3, and -5.9 eV, respectively. We found that although DAPV SAMs have a quantum yield of 0.11%, the binary SAM films have a good quantum yield of 2.30%, which was 20 times higher than that of DAPV SAMs on ITO. This result may be due to the higher adsorption property of the binary SAMs for the light in visible range compared to that of DAPV SAMs. From this study, we demonstrated that the photocurrent generation systems with a high quantum yield can be obtained by the functional binary SAMs.

19.
J Nanosci Nanotechnol ; 11(5): 4476-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21780480

ABSTRACT

In order to enhance the power conversion efficiency of ZnO nanorods-based dye-sensitized solar cells (DSSCs), ZrO2 thin energy barriers were formed on ZnO nanorods using a sol-gel method. In DSSCs, the short-circuit current was substantially increased, and the dark current was significantly reduced in the presence of the ZrO2 layer. Due to suppressed recombination in the presence of the ZrO2 layer, 81.3% increment of power conversion efficiency is achieved compared to those without ZrO2 layer.

20.
J Nanosci Nanotechnol ; 11(5): 4501-5, 2011 May.
Article in English | MEDLINE | ID: mdl-21780486

ABSTRACT

Polythiophene layers were formed on self-assembled monolayers (SAMs)/indium tin oxide (ITO) using photoelectrochemical polymerization. The SAMs on ITO was prepared using Ru(4,4'-dicarboxylic acid-2,2'-bipyridine)2(NCS)2 and di(3-aminopropyl)viologen. The photoelectrochemically polymerized polythiophene layers on SAMs/ITO were characterized using UV-vis. absorption spectroscopy, atomic force microscopy, scanning electron microscopy, and cyclic voltammetry. The polymer layers have thickness of 360 nm, a dense surface morphology, optical gap of 2.38 eV, highest occupied molecular orbital of -5.2 eV and lowest unoccupied molecular orbital of -2.82 eV. In photoelectrochemical cells, the polythiophene on SAMs/ITO electrode showed a photocurrent of 5 microA/cm2.

SELECTION OF CITATIONS
SEARCH DETAIL
...