Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(15): 18800-18811, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587467

ABSTRACT

Recently, C60 has emerged as a promising anode material for Li-ion batteries, attracting significant interest due to its excellent lithium storage capacity. The electrochemical performance of C60 as an anode is largely dependent on its internal crystal structure, which is significantly influenced by the synthesis method and corresponding conditions. However, there have been few reports on how the synthesis process affects the crystal structure and Li+ storage capacity of C60. This study used the liquid-liquid interface precipitation method and a low-temperature annealing process to fabricate one-dimensional C60 nanorods (NRs). We thoroughly investigated synthesis conditions, including the growth time, drying temperature, annealing time, and annealing atmosphere. The results demonstrate that these synthesis conditions directly impact the morphology, phase transition, and electrochemical efficiency of pure C60 NRs. Remarkably, the hexagonal close-packed structural C60 NRs-6012h, in a metastable form, exhibits a reversible Li+ storage capacity as an anode material in Li-ion batteries. Furthermore, the face-centered cubic C60 NRs-603001h electrode shows significantly enhanced rate performance and long-cycle stability. A discharge-specific capacity of 603 mAh g-1 was maintained after 2000 cycles at a current density of 2 A g-1. This study elucidates the effect of synthesis conditions on C60 crystals, offering an effective strategy for preparing high-performance C60 anode materials.

2.
ACS Appl Mater Interfaces ; 15(48): 55692-55702, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37981729

ABSTRACT

Aqueous zinc-vanadium hybrid redox flow battery systems are an efficient strategy to address the problems of low voltage and high cost of conventional all-vanadium redox flow batteries. However, the low electrochemical activity of carbon-based electrodes toward a vanadium redox reaction limits the performance of redox flow batteries. In this study, polyhedral binary cerium titanium oxide (Ce2/3TiO3, CTO) is synthesized using molten salt synthesis. CTO is fabricated by adjusting the temperature and composition. Notably, the prepared CTO obtained at 1000 °C shows the highest catalytic activity for a VO2+/VO2+ redox reaction. Further, CTO is prepared as a composite electrocatalyst and applied to a high-voltage aqueous zinc-vanadium redox flow battery. The cell adopts an alkali zinc electrolyte containing a Zn/[Zn(OH)4]2- redox pair and exhibits a high operating voltage of 2.26 V. Remarkably, a zinc-vanadium redox flow battery using the composite electrocatalyst exhibits a high energy density of 42.68 Wh L-1 at 20 mA cm-2 and an initial voltage efficiency of 90.3%. The excellent cell performance is attributed to structural defects caused by A-site deficiency in the perovskite oxide structure as well as oxygen vacancies resulting from the low valence state of the metal ion, which enhance the catalytic activity of the vanadium ions.

3.
ACS Appl Mater Interfaces ; 14(39): 44303-44316, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36165326

ABSTRACT

The development of advanced hierarchical anode materials has recently become essential to achieving high-performance sodium-ion batteries. Herein, we developed a facile and cost-effective scheme for synthesizing graphene-wrapped, nitrogen-rich carbon-coated iron sulfide nanofibers (FeS@NCG) as an anode for SIBs. The designed FeS@NCG can provide a significant reversible capacity of 748.5 mAh g-1 at 0.3 A g-1 for 50 cycles and approximately 3.9-fold higher electrochemical performance than its oxide analog (Fe2O3@NCG, 192.7 mAh g-1 at 0.3 A g-1 for 50 cycles). The sulfur- and nitrogen-rich multilayer package structure facilitates efficient suppression of the porous FeS volume expansion during the sodiation process, enabling a long cycle life. The intimate contact between graphene and porous carbon-coated FeS nanofibers offers strong structural barriers associated with charge-transfer pathways during sodium insertion/extraction. It also reduces the dissolution of polysulfides, enabling efficient sodium storage with superior stable kinetics. Furthermore, outstanding capacity retention of 535 mAh g-1 at 5 A g-1 is achieved over 1010 cycles. The FeS@NCG also exhibited a specific capacity of 640 mAh g-1 with a Coulombic efficiency of above 99.8% at 5 A g-1 at 80 °C, indicating its development prospects in high-performance SIB applications.

4.
Nature ; 603(7901): 434-438, 2022 03.
Article in English | MEDLINE | ID: mdl-35296844

ABSTRACT

Oxidation can deteriorate the properties of copper that are critical for its use, particularly in the semiconductor industry and electro-optics applications1-7. This has prompted numerous studies exploring copper oxidation and possible passivation strategies8. In situ observations have, for example, shown that oxidation involves stepped surfaces: Cu2O growth occurs on flat surfaces as a result of Cu adatoms detaching from steps and diffusing across terraces9-11. But even though this mechanism explains why single-crystalline copper is more resistant to oxidation than polycrystalline copper, the fact that flat copper surfaces can be free of oxidation has not been explored further. Here we report the fabrication of copper thin films that are semi-permanently oxidation resistant because they consist of flat surfaces with only occasional mono-atomic steps. First-principles calculations confirm that mono-atomic step edges are as impervious to oxygen as flat surfaces and that surface adsorption of O atoms is suppressed once an oxygen face-centred cubic (fcc) surface site coverage of 50% has been reached. These combined effects explain the exceptional oxidation resistance of ultraflat Cu surfaces.

5.
Adv Mater ; 33(43): e2104763, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34510588

ABSTRACT

Li+ intercalates into a pure face-centered-cubic (fcc) C60 structure instead of being adsorbed on a single C60 molecule. This hinders the excess storage of Li ions in Li-ion batteries, thereby limiting their applications. However, the associated electrochemical processes and mechanisms have not been investigated owing to the low electrochemical reactivity and poor crystallinity of the C60 powder. Herein, a facile method for synthesizing pure fcc C60 nanoparticles with uniform morphology and superior electrochemical performance in both half- and full-cells is demonstrated using a 1 m LiPF6 solution in ethylene carbonate/diethyl carbonate (1:1 vol%) with 10% fluoroethylene carbonate. The specific capacity of the C60 nanoparticles during the second discharge reaches ≈750 mAh g-1 at 0.1 A g-1 , approximately twice that of graphite. Moreover, by applying in situ X-ray diffraction, high-resolution transmission electron microscopy, and first-principles calculations, an abnormally high Li storage in a crystalline C60 structure is proposed based on the vacant sites among the C60 molecules, Li clusters at different sites, and structural changes during the discharge/charge process. The fcc of C60 transforms tetragonal via orthorhombic Lix C60 and back to the cubic phase during discharge. The presented results will facilitate the development of novel fullerene-based anode materials for Li-ion batteries.

6.
Adv Mater ; 33(15): e2007345, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33751679

ABSTRACT

Stochastic inhomogeneous oxidation is an inherent characteristic of copper (Cu), often hindering color tuning and bandgap engineering of oxides. Coherent control of the interface between metal and metal oxide remains unresolved. Coherent propagation of an oxidation front in single-crystal Cu thin film is demonstrated to achieve a full-color spectrum for Cu by precisely controlling its oxide-layer thickness. Grain-boundary-free and atomically flat films prepared by atomic-sputtering epitaxy allow tailoring of the oxide layer with an abrupt interface via heat treatment with a suppressed temperature gradient. Color tuning of nearly full-color red/green/blue indices is realized by precise control of the oxide-layer thickness; the samples cover ≈50.4% of the standard red/green/blue color space. The color of copper/copper oxide is realized by the reconstruction of the quantitative yield color from the oxide "pigment" (complex dielectric functions of Cu2 O) and light-layer interference (reflectance spectra obtained from the Fresnel equations) to produce structural color. Furthermore, laser-oxide lithography is demonstrated with micrometer-scale linewidth and depth through local phase transformation to oxides embedded in the metal, providing spacing necessary for semiconducting transport and optoelectronics functionality.

7.
Materials (Basel) ; 12(13)2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31277206

ABSTRACT

Fullerene-based materials including C60 and doped C60 have previously been proposed as anodes for lithium ion batteries. It was also shown earlier that n- and p-doping of small molecules can substantially increase voltages and specific capacities. Here, we study ab initio the attachment of multiple lithium atoms to C60, nitrogen-doped C60 (n-type), and boron doped C60 (p-type). We relate the observed attachment energies (which determine the voltage) to changes in the electronic structure induced by Li attachment and by doping. We compare results with a GGA (generalized gradient approximation) functional and a hybrid functional and show that while they agree semi-quantitatively with respect to the expected voltages, there are qualitative differences in the electronic structure. We show that, contrary to small molecules, single atom n- and p-doping will not lead to practically useful modulation of the voltage-capacity curve beyond the initial stages of lithiation.

8.
RSC Adv ; 8(18): 9895-9900, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-35540802

ABSTRACT

Understanding the electronic band structure and density of states (DOS) of a material and their relationship to the associated electronic transport properties is the starting point for optimizing the performance of a device and its technological applications. In a hydrogenated Zn0.8Co0.2O (ZnCoO:H) film with an inverted thin-film transistor structure, we found ambipolar behavior, which is shown in many field-effect devices based on graphene, graphene nanoribbons, and organic semiconductors. In this study, to obtain information on the DOS of ZnCoO:H to explain the ambipolar behavior in terms of the carrier density and type, resistivity and magnetoresistance measurements of a ZnCoO:H film were performed at 5 K. Our proposed DOS representation of ZnCoO:H explains qualitatively the experimental observations of carrier density modulation and ambipolar behavior. First-principles calculations of the DOS of ZnCoO:H were in good agreement with the proposed DOS representation. Through a comparison of first-principles calculations and experimental data, evidence for the existence of Co-H-Co in ZnCoO:H is suggested.

9.
Sci Rep ; 7(1): 11101, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894141

ABSTRACT

Magnetic oxide semiconductors with wide band gaps have promising spintronic applications, especially in the case of magneto-optic devices. Co-doped ZnO (ZnCoO) has been considered for these applications, but the origin of its ferromagnetism has been controversial for several decades and no substantial progress for a practical application has been made to date. In this paper, we present direct evidence of hydrogen-mediated ferromagnetism and spin polarization in the conduction band of ZnCoO. Electron density mapping reveals the formation of Co-H-Co, in agreement with theoretical predictions. Electron spin resonance measurement elucidates the ferromagnetic nature of ZnCoO by the formation of Co-H-Co. We provide evidence from magnetic circular dichroism measurements supporting the hypothesis that Co-H-Co contributes to the spin polarization of the conduction band of hydrogen-doped ZnCoO.

10.
ACS Nano ; 11(1): 1026-1033, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28040886

ABSTRACT

As potential high-performance anodes for Li-ion batteries (LIBs), hierarchical heteronanostructures consisting of TiNb2O7 nanofibers and ultrathin MoS2 nanosheets (TNO@MS HRs) were synthesized by simple electrospinning/hydrothermal processes. With their growth mechanism revealed, the TNO@MS HRs exhibited an entangled structure both for their ionic and electronic conducting pathways, which enabled the synergetic combination of one- and two-dimensional structures to be realized. In the potential range of 0.001-3 V vs Li/Li+, the TNO@MS HR-based LIBs exhibited high capacities of 872 and 740 mAh g-1 after 42 and 200 cycles at a current density of 1 A g-1, respectively, and excellent rate performance of 611 mAh g-1 at 4 A g-1. We believe that the fabrication route of TNO@MS HRs will find visibility for the use of anode electrodes for high capacity LIBs at low cost.

12.
J Nanosci Nanotechnol ; 15(1): 244-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26328340

ABSTRACT

In this study, we present dye-sensitized solar cells (DSSCs) with improved efficiencies by using SnO2/TiO2 composite photoanodes containing SnO2 at various concentrations. The composites consisted of hollow nanofibers (h-NFs) of SnO2 and TiO2 nanoparticles (NPs). The combination of the large surface area of the NPs and the efficient charge transport in the h-NFs make the use of the SnO2/TiO2 composites advantageous. DSSCs in which composite photoanodes with 50 wt% h-NFs were incorporated showed enhanced efficiencies that were 20% higher than the efficiencies of cells containing TiO2 NP-based photoanodes. These results indicated the improved electron diffusion length and shorter electron transfer time in the composite structures due to the crosslinking between h-NFs and NPs.

13.
Adv Mater ; 27(31): 4551-9, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26177830

ABSTRACT

3D mesostructured AgCl-KCl photonic crystals emerge from colloidal templating of eutectic solidification. Solvent removal of the KCl phase results in a mesostructured AgCl inverse opal. The 3D-template-induced confinement leads to the emergence of a complex microstructure. The 3D mesostructured eutectic photonic crystals have a large stop band ranging from the near-infrared to the visible tuned by the processing.

14.
Nanoscale Res Lett ; 9(1): 221, 2014.
Article in English | MEDLINE | ID: mdl-24910575

ABSTRACT

Hydrogen-treated ZnCoO shows magnetic behavior, which is related to the formation of Co-H-Co complexes. However, it is not well known how the complexes are connected to each other and with what directional behavior they are ordered. In this point of view, ZnCoO nanowire is an ideal system for the study of the magnetic anisotropy. ZnCoO nanowire was fabricated by trioctylamine solution method under different ambient gases. We found that the oxidation of trioctylamine plays an essential role on the synthesis of high-quality ZnCoO nanowires. The hydrogen injection to ZnCoO nanowires induced ferromagnetism with larger magnetization than ZnCoO powders, while becoming paramagnetic after vacuum heat treatment. Strong ferromagnetism of nanowires can be explained by the percolation of Co-H-Co complexes along the c-axis.

15.
Sci Rep ; 4: 5450, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24965478

ABSTRACT

Resistivity is an intrinsic feature that specifies the electrical properties of a material and depends on electron-phonon scattering near room temperature. Reducing the resistivity of a metal to its potentially lowest value requires eliminating grain boundaries and impurities, but to date few studies have focused on reducing the intrinsic resistivity of a pure metal itself. We could reduce the intrinsic resistivity of single-crystal Ag, which has an almost perfect structure, by impurity doping it with Cu. This paper presents our results: resistivity was reduced to 1.35 µΩ · cm at room temperature after 3 mol% Cu-doping of single-crystal Ag. Various mechanisms were examined in an attempt to explain the abnormal behavior.

16.
J Nanosci Nanotechnol ; 12(7): 6022-5, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966701

ABSTRACT

Atmospheric plasma (AP) treatment was carried out on TiO2 nanorods (NRs) that were hydrothermally grown on F-doped SnO2 (FTO)/glass. The effects of AP treatment on the surface of the TiO2 NRs were investigated, where the treatment involved the use of the reactive gases H2, N2, and O2. The surface energy of AP-treated TiO2 NRs was about 1.5 times higher than that of untreated TiO2 NRs (364.3 mJ/m2). After AP treatment, the increase of the peak area ratios of the Ti2O3 and TiO2 peaks in the XPS spectra resulted in a decrease in the number of oxygen vacancies in the TiO2 NRs. The efficiency of a dye-sensitized solar cell (DSSC) based on the N2-plasma-treated TiO2 NRs, which was approximately 1.11%, was about 79% higher than that of a DSSC based on the untreated TiO2 NRs.

17.
Rev Sci Instrum ; 83(1): 013901, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22299964

ABSTRACT

The circuitry and components of a Hall measurement kit were replaced with single-crystal copper (SCC) wires and parts prepared by a novel wire fabrication process. This process preserved the grain-free structure of SCC grown by the Czochralski method. The new kit was used to determine, with greatly improved precision, the electrical coefficients such as carrier density and mobility, establish the reproducibility of the measured values, and define the semiconductor type. The observed reduction in electrical signal losses and distortion has been attributed to grain boundary elimination.

18.
J Nanosci Nanotechnol ; 11(8): 7100-3, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22103133

ABSTRACT

Nanofibers containing cell nutrients (PGDs) were fabricated by mixing 5 wt% poly(epsilon-caprolactone) (P), 4 wt% gelatin (G), and 0-2.4 wt% Dulbecco's Modified Eagle's Medium (D). The contact angles showed a considerable decrease from 118.4 degrees on the P scaffold to 17.6 degrees on PGD1.6 (containing 1.6 wt% D). The weight loss ratios between PGD1.6 and the P nanofiber, and between PGD1.6 and the PG nanofiber by degradation after 28 days were approximately 3.1 and 1.4, respectively. The rate of cell proliferation on PGD1.6 was greater than that on the PG nanofiber by 14% and 38% for the exchanged and unexchanged culture media, respectively. The physicochemical measurement results showed that the PGDs exhibited enhanced hydrophilic properties and rapid biodegradation. The PGD nanofibers with increasing D content showed better conditions for long-term cell viability. The growth mechanism of the cells on the PGDs was explained by an attachment and growth process.


Subject(s)
Biocompatible Materials , Cell Survival , Nanofibers , Animals , CHO Cells , Cell Proliferation , Cricetinae , Cricetulus , Microscopy, Electron, Scanning
19.
J Nanosci Nanotechnol ; 11(8): 7155-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22103146

ABSTRACT

TiO2 nanobarbed fiber (NBF) structures consisting of TiO2 nanorods (NRs) on TiO2 nanofibers (NFs) were fabricated. The mean length and diameter of the TiO2 NRs grown for 6 h was 1.38 microm and 71 nm, respectively. One NR was connected to other NRs and the junction points between the TiO2 NRs increased with increasing TiO2 NR length. The crystal structure of the TiO2 NFs and NRs was rutile and anatase, respectively. After post-annealing, only the intensity of the TiO2 NBF peaks increased without any significant structural changes. Raman spectroscopy showed that the TiO2 NBF structure consisted of anatase (TiO2 NFs) and rutile (TiO2 NRs). The bandgap of the TiO2 NBF structure prepared during a TiO2 NR growth time from 0 to 6 h decreased from 3.23 eV to 3.10 eV. The conductivity of the TiO2 NBFs with longer NRs was enhanced by post-annealing.

20.
J Nanosci Nanotechnol ; 10(8): 5008-14, 2010 Aug.
Article in English | MEDLINE | ID: mdl-21125843

ABSTRACT

Nanocrystalline Bi5Ti3FeO15 layered perovskite exhibiting Aurivillius phase was synthesized by polymerized complex (PC) method and investigated for its physico-chemical as well as optical properties. The crystallization of Bi5Ti3FeO15 synthesized by PC method was found to occur in the temperature range of 800-1050 degress C, whereas the single crystalline Bi5Ti3FeO15 formed at 1030 degrees C by solid state reaction (SSR) method. The observation of highly pure phase and such lower crystallization temperature in Bi5Ti3FeO15 prepared by PC method, is in total contrast to that observed in Bi5Ti3FeO15 prepared by the conventional solid-state reaction (SSR) method. The band gap of nanocrystalline Bi5Ti3FeO15 determined from UV-Vis diffusion reflectance spectrometer was 2.38 eV (525 nm). The photocatalytic activity of Pt/Bi5Ti3FeO15 prepared by PC method was investigated with the photodecomposition of isopropyl alcohol (IPA) and hydrogen production from water-methanol mixed solution under visible light (lambda > or = 420 nm). The respective activities for PC sample were higher than that of Pt/Bi5Ti3FeO15 prepared by SSR as well as Pt/TiO(2-x)N(x).

SELECTION OF CITATIONS
SEARCH DETAIL
...