Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37630960

ABSTRACT

A human body monitoring system remains a significant focus, and to address the challenges in wearable sensors, a nanotechnology-enhanced strategy is proposed for designing stretchable metal-organic polymer nanocomposites. The nanocomposite comprises reduced graphene oxide (rGO) and in-situ generated silver nanoparticles (AgNPs) within elastic electrospun polystyrene-butadiene-polystyrene (SBS) fibers. The resulting Sandwich Structure Piezoresistive Woven Nanofabric (SSPWN) is a tactile-sensitive wearable sensor with remarkable performance. It exhibits a rapid response time (less than three milliseconds) and high reproducible stability over 5500 cycles. The nanocomposite also demonstrates exceptional thermal stability due to effective connections between rGO and AgNPs, making it suitable for wearable electronic applications. Furthermore, the SSPWN is successfully applied to human motion monitoring, including various areas of the hand and RGB sensing shoes for foot motion monitoring. This nanotechnology-enhanced strategy shows promising potential for intelligent healthcare, health monitoring, gait detection, and analysis, offering exciting prospects for future wearable electronic products.

2.
Front Bioeng Biotechnol ; 11: 1075720, 2023.
Article in English | MEDLINE | ID: mdl-37168611

ABSTRACT

Introduction: Slow wound repair in diabetes is a serious adverse event that often results in loss of a limb or disability. An advanced and encouraging vehicle is wanted to enhance clinically applicable diabetic wound care. Nanofibrous insulin/vildagliptin core-shell biodegradable poly (lactic-co-glycolic acid) (PLGA) scaffolds to prolong the effective drug delivery of vildagliptin and insulin for the repair of diabetic wounds were prepared. Methods: To fabricate core-shell nanofibrous membranes, vildagliptin mixture with PLGA, and insulin solution were pumped via separate pumps into two differently sized capillary tubes that were coaxially electrospun. Results and Discussion: Nanofibrous core-shell scaffolds slowly released effective vildagliptin and insulin over 2 weeks in vitro migration assay and in vivo wound-healing models. Water contact angle (68.3 ± 8.5° vs. 121.4 ± 2.0°, p = 0.006) and peaked water absorbent capacity (376% ± 9% vs. 283% ± 24%, p = 0.003) of the insulin/vildagliptin core-shell nanofibrous membranes remarkably exceeded those of a control group. The insulin/vildagliptin-loaded core-shell nanofibers improved endothelial progenitor cells migration in vitro (762 ± 77 cells/mm2 vs. 424.4 ± 23 cells/mm2, p < 0.001), reduced the α-smooth muscle actin content in vivo (0.72 ± 0.23 vs. 2.07 ± 0.37, p < 0.001), and increased diabetic would recovery (1.9 ± 0.3 mm2 vs. 8.0 ± 1.4 mm2, p = 0.002). Core-shell insulin/vildagliptin-loaded nanofibers extend the drug delivery of insulin and vildagliptin and accelerate the repair of wounds associated with diabetes.

3.
Nanomaterials (Basel) ; 12(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36364516

ABSTRACT

Delayed diabetic wound healing is an adverse event that frequently leads to limb disability or loss. A novel and promising vehicle for the treatment of diabetic wounds is required for clinical purposes. The biocompatible and resorbable poly (lactic-co-glycolic acid) (PLGA)-based fibrous membranes prepared by electrospinning that provide a sustained discharge of saxagliptin for diabetic wound healing were fabricated. The concentration of released saxagliptin in Dulbecco's phosphate-buffered saline was analyzed for 30 days using high-performance liquid chromatography. The effectiveness of the eluted saxagliptin was identified using an endothelial progenitor cell migration assay in vitro and a diabetic wound healing in vivo. Greater hydrophilicity and water storage were shown in the saxagliptin-incorporated PLGA membranes than in the pristine PLGA membranes (both p < 0.001). For diabetic wound healing, the saxagliptin membranes accelerated the wound closure rate, the dermal thickness, and the heme oxygenase-1 level over the follicle areas compared to those in the pristine PLGA group at two weeks post-treatment. The saxagliptin group also had remarkably higher expressions of insulin-like growth factor I expression and transforming growth factor-ß1 than the control group (p = 0.009 and p < 0.001, respectively) in diabetic wounds after treatment. The electrospun PLGA-based saxagliptin membranes exhibited excellent biomechanical and biological features that enhanced diabetic wound closure and increased the antioxidant activity, cellular granulation, and functionality.

4.
ACS Appl Mater Interfaces ; 14(26): 30160-30173, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35748505

ABSTRACT

Wearable skin-inspired electronic skins present remarkable outgrowth in recent years because their promising comfort device integration, lightweight, and mechanically robust durable characteristics led to significant progresses in wearable sensors and optoelectronics. Wearable electronic devices demand real-time applicability and factors such as complex fabrication steps, manufacturing cost, and reliable and durable performances, severely limiting the utilization. Herein, we nominate a scalable solution-processable electrospun patterned candidate capable of forming ultralong mechanically robust nano-microdimensional fibers with higher uniformity. Nanofibrous patterned substrates present surface energy and silver nanoparticle crystallization shifts, contributing to strain-sensitive and -insensitive conductive electrodes (10 000 cycles of 50% strain). Synergistic robust stress releasing and durable electromechanical behavior engenders stretchable durable health sensors, strain-insensitive pressure sensors (sensitivity of ∼83 kPa-1 and 5000 durable cycles), robust alternating current electroluminescent displays, and flexible organic light-emitting diodes (20% improved luminescence and 300 flex endurance of 2 mm bend radius).


Subject(s)
Metal Nanoparticles , Wearable Electronic Devices , Electric Conductivity , Electronics , Humans , Metal Nanoparticles/chemistry , Silver/chemistry
5.
Polymers (Basel) ; 14(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35631835

ABSTRACT

Starch-based biodegradable foams with a high starch content are developed using industrial starch as the base material and supercritical CO2 as blowing or foaming agents. The superior cushioning properties of these foams can lead to competitiveness in the market. Despite this, a weak melting strength property of starch is not sufficient to hold the foaming agents within it. Due to the rapid diffusion of foaming gas into the environment, it is difficult for starch to maintain pore structure in starch foams. Therefore, producing starch foam by using supercritical CO2 foaming gas faces severe challenges. To overcome this, we have synthesized thermoplastic starch (TPS) by dispersing starch into water or glycerin. Consecutively, the TPS surface was modified by compatibilizer silane A (SA) to improve the dispersion with poly(butylene adipate-co-terephthalate) (PBAT) to become (TPS with SA)/PBAT composite foam. Furthermore, the foam-forming process was optimized by varying the ratios of TPS and PBAT under different forming temperatures of 85 °C to 105 °C, and two different pressures, 17 Mpa and 23 Mpa were studied in detail. The obtained results indicate that the SA surface modification on TPS can influence the great compatibility with PBAT blended foams (foam density: 0.16 g/cm3); whereas unmodified TPS and PBAT (foam density: 0.349 g/cm3) exhibit high foam density, rigid foam structure, and poor tensile properties. In addition, we have found that the 80% TPS/20% PBAT foam can be achieved with good flexible properties. Because of this flexibility, lightweight and environment-friendly nature, we have the opportunity to resolve the strong demands from the packing market.

6.
Polymers (Basel) ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36616479

ABSTRACT

Biodegradable foams are a potential substitute for most fossil-fuel-derived polymer foams currently used in the cushion furniture-making industry. Thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate) (PBAT) are biodegradable polymers, although their poor compatibility does not support the foam-forming process. In this study, we investigated the effect of polyethylene glycol (PEG) with or without silane A (SA) on the foam density, cell structure and tensile properties of TPS/PBAT blends. The challenges in foam forming were explored through various temperature and pressure values under supercritical carbon dioxide (CO2) conditions. The obtained experimental results indicate that PEG and SA act as a plasticizer and compatibilizer, respectively. The 50% (TPS with SA + PEG)/50% PBAT blends generally produce foams that have a lower foam density and better cell structure than those of 50% (TPS with PEG)/50% PBAT blends. The tensile property of each 50% (TPS with SA + PEG)/50% PBAT foam is generally better than that of each 50% (TPS with PEG)/50% PBAT foam.

7.
Polymers (Basel) ; 13(24)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34960831

ABSTRACT

The Conducting of polymers belongs to the class of polymers exhibiting excellence in electrical performances because of their intrinsic delocalized π- electrons and their tunability ranges from semi-conductive to metallic conductive regime. Conducting polymers and their composites serve greater functionality in the application of strain and pressure sensors, especially in yielding a better figure of merits, such as improved sensitivity, sensing range, durability, and mechanical robustness. The electrospinning process allows the formation of micro to nano-dimensional fibers with solution-processing attributes and offers an exciting aspect ratio by forming ultra-long fibrous structures. This review comprehensively covers the fundamentals of conducting polymers, sensor fabrication, working modes, and recent trends in achieving the sensitivity, wide-sensing range, reduced hysteresis, and durability of thin film, porous, and nanofibrous sensors. Furthermore, nanofiber and textile-based sensory device importance and its growth towards futuristic wearable electronics in a technological era was systematically reviewed to overcome the existing challenges.

8.
Adv Sci (Weinh) ; 8(21): e2102275, 2021 11.
Article in English | MEDLINE | ID: mdl-34519441

ABSTRACT

Self-healing soft electronic material composition is crucial to sustain the device long-term durability. The fabrication of self-healing soft electronics exposed to high moisture environment is a significant challenge that has yet to be fully achieved. This paper presents the novel concept of a water-assisted room-temperature autonomous self-healing mechanism based on synergistically dynamic covalent Schiff-based imine bonds with hydrogen bonds. The supramolecular water-assisted self-healing polymer (WASHP) films possess rapid self-healing kinetic behavior and high stretchability due to a reversible dissociation-association process. In comparison with the pristine room-temperature self-healing polymer, the WASHP demonstrates favorable mechanical performance at room temperature and a short self-healing time of 1 h; furthermore, it achieves a tensile strain of 9050%, self-healing efficiency of 95%, and toughness of 144.2 MJ m-3 . As a proof of concept, a versatile WASHP-based light-emitting touch-responsive device (WASHP-LETD) and perovskite quantum dot (PeQD)-based white LED backlight are designed. The WASHP-LETD has favorable mechanical deformation performance under pressure, bending, and strain, whereas the WASHP-PeQDs exhibit outstanding long-term stability even over a period exceeding one year in a boiling water environment. This paper provides a mechanically robust approach for producing eco-friendly, economical, and waterproof e-skin device components.


Subject(s)
Elastomers/chemistry , Water/chemistry , Calcium Compounds/chemistry , Dimethylpolysiloxanes/chemistry , Electronics/instrumentation , Luminescence , Oxides/chemistry , Quantum Dots/chemistry , Temperature , Tensile Strength , Titanium/chemistry , Wearable Electronic Devices
9.
Polymers (Basel) ; 13(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916011

ABSTRACT

Human safety, health management, and disease transmission prevention have become crucial tasks in the present COVID-19 pandemic situation. Masks are widely available and create a safer and disease transmission-free environment. This study presents a facile method of fabricating masks through electrospinning nontoxic polyvinyl butyral (PVB) polymeric matrix with the antibacterial component Thymol, a natural phenol monoterpene. Based on the results of Japanese Industrial Standards and American Association of Textile Chemists and Colorists methods, the maximum antibacterial value of the mask against Gram-positive and Gram-negative bacteria was 5.6 and 6.4, respectively. Moreover, vertical electrospinning was performed to prepare Thymol/PVB nanofiber masks, and the effects of parameters on the submicron particulate filtration efficiency (PFE), differential pressure, and bacterial filtration efficiency (BFE) were determined. Thorough optimization of the small-diameter nanofiber-based antibacterial mask led to denser accumulation and improved PFE and pressure difference; the mask was thus noted to meet the present pandemic requirements. The as-developed nanofibrous masks have the antibacterial activity suggested by the National Standard of the Republic of China (CNS 14774) for general medical masks. Their BFE reaches 99.4%, with a pressure difference of <5 mmH2O/cm2. The mask can safeguard human health and promote a healthy environment.

10.
RSC Adv ; 11(19): 11444-11456, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-35423653

ABSTRACT

Cellulose nanocrystals (CNCs) are the most commonly used natural polymers for biomaterial synthesis. However, their low dispersibility, conductivity, and poor compatibility with the hydrophobic matrix hinder their potential applications. Therefore, we grafted sulfate half-ester and carboxylic functional groups onto CNC surfaces (S-CNC and C-CNC) to overcome these shortcomings. The effect of the dopants, surfactant ratios, and properties of CNCs on the thermal stability, conductivity, and surface morphology of polyaniline (PANI)-doped CNC nanocomposites were investigated through emulsion and in situ polymerization. The higher electrical conductivity and well-dispersed morphology of SCNC-PANI30 (1.1 × 10-2 S cm-1) but lower thermal stability than that of CCNC-PANI30 (T 0: 189 °C) nanocomposites are highly related to dispersibility of S-CNCs. However, after 4-dodecylbenzenesulfonic acid (DBSA) was added, the conductivity and thermal stability of SCNC/PANI increased up to 2.5 × 10-1 S cm-1 and 192 °C with almost no particle aggregation because of the increase in charge dispersion. The proposed biodegradable, renewable, and surface-modified S-CNC and C-CNC can be used in high-thermal-stability applications such as food packaging, optical films, reinforcement fillers, flexible semiconductors, and electromagnetic materials.

11.
Polymers (Basel) ; 12(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271805

ABSTRACT

The development of nontoxic and biodegradable alginate-based materials has been a continual goal in biological applications. However, their hydrophilic nature and lack of spinnability impart water instability and poor mechanical strength to the nanofiber. To overcome these limitations, sodium alginate (SA) and waterborne polyurethane (WPU) were blended and crosslinked with calcium chloride; 30 wt % of SA exhibited good compatibility. Further addition of 10 wt % calcium chloride improved the water stability to an extremely humid region. Furthermore, the stress-strain curve revealed that the initial modulus and the elongation strength of the WPU/SA and WPU/CA blends increased with SA content, and the crosslinker concentration clearly indicated the dressing material hardness resulted from this simple blend strategy. The WPU/SA30 electrospun nanofibrous blend contained porous membranes; it exhibited good mechanical strength with water-stable, water-absorbable (37.5 wt %), and moisture-permeable (25.1 g/m2-24 h) characteristics, suggesting our cost-effective material could function as an effective wound dressing material.

12.
ACS Omega ; 5(15): 8972-8981, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32337461

ABSTRACT

CsPbBr3 is a promising light-emitting material due to its wet solution processability, high photoluminescence quantum yield (PLQY), narrow color spectrum, and cost-effectiveness. Despite such advantages, the morphological defects, unsatisfactory carrier injection, and stability issues retard its widespread applications in light-emitting devices (LEDs). In this work, we demonstrated a facile and cost-effective method to improve the morphology, efficiency, and stability of the CsPbBr3 emissive layer using a dual polymeric encapsulation governed by an interface-assisted grain control process (IAGCP). An eco-friendly low-cost hydrophilic polymer poly(vinylpyrrolidone) (PVP) was blended into the CsPbBr3 precursor solution, which endows the prepared film with a better surface coverage with a smoothened surface. Furthermore, it is revealed that inserting a thin PVP nanothick interlayer at the poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/emissive layer interface further promotes the film quality and the performance of the derived LED. It is mainly attributed to three major consequences: (i) reduced grain size of the emissive layer, which facilitates charge recombination, (ii) reduced current leakage due to the enhanced electron-blocking effect, and (iii) improved color purity and air stability owing to better defect passivation. As a result, the optimized composite emissive film can retain the luminescence properties even on exposure to ambient conditions for 80 days and ∼62% of its initial PL intensity can be preserved after 30 days of storage without any encapsulation.

13.
ACS Appl Mater Interfaces ; 12(12): 14408-14415, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32118411

ABSTRACT

Perovskite light-emitting diode (PeLED) has been vigorously developed in recent years. As it has demonstrated good performance on the rigid substrates, the next important direction of PeLED is its integration with stretchable components to realize stretchable, responsive device. Here, we describe a facile fabrication of stretchable perovskite light-emissive touch-responsive devices (PeLETDs) by utilizing highly transparent and conductive polyurethane/silver nanowires (PU/AgNWs) as the electrode. Meanwhile, a stretchable tricomposite perovskite emissive layer was developed by blending a small amount of poly(ethylene oxide) (PEO) and poly(vinylpyrrolidone) (PVP) with CsPbBr3. Additionally, a thin PVP layer was introduced at the bottom of the emissive layer. On one hand, it can further improve the morphology of the emissive layer; on the other hand, it can serve as an electron-injection barrier to reduce the high nonradiative recombination at the corresponding interface. Further, to fulfill the responsive function of the fabricated PeLEDs, a poly(ethylene terephthalate) (PET) spacer with a 100 µm thickness was inserted between the top electrode and the emissive layer. A stretchable PeLETD is finally demonstrated to possess a low turn-on voltage of 2 V with a brightness of 380.5 cd m-2 at 7.5 V and can sustain 30% uniaxial strain with a small luminance variation of 24%. More interestingly, our stretchable PeLETD exhibited high stability, which could be well touch responsivity, where the luminance is on/off switched for 300 cycles by repeatedly applying pressure.

14.
Polymers (Basel) ; 12(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150907

ABSTRACT

Conjugated copolymers (CCPs) are a class of polymers with excellent optical luminescent and electrical conducting properties because of their extensive π conjugation. CCPs have several advantages such as facile synthesis, structural tailorability, processability, and ease of device fabrication by compatible solvents. Electrospinning (ES) is a versatile technique that produces continuous high throughput nanofibers or microfibers and its appropriate synchronization with CCPs can aid in harvesting an ideal sensory nanofiber. The ES-based nanofibrous membrane enables sensors to accomplish ultrahigh sensitivity and response time with the aid of a greater surface-to-volume ratio. This review covers the crucial aspects of designing highly responsive optical sensors that includes synthetic strategies, sensor fabrication, mechanistic aspects, sensing modes, and recent sensing trends in monitoring environmental toxicants, pH, temperature, and humidity. In particular, considerable attention is being paid on classifying the ES-based optical sensor fabrication to overcome remaining challenges such as sensitivity, selectivity, dye leaching, instability, and reversibility.

15.
Soft Matter ; 15(47): 9710-9720, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31729500

ABSTRACT

Poly(butylene succinate-co-propylene succinate) (PBSPS) was polymerized using succinic acid, 1,4-butanediol, 1,3-propanediol, and glycerol (GC). The PBSPS copolyester with a BS/PS ratio of 7/3 has a low melting point (Tm, 80 °C) and crystallization temperature (Tc, 20 °C) in addition to excellent thermal stability with a thermal degradation temperature (Td) above 300 °C. Isodimorphism was observed for 30-50 mol% PS, lowering Tm and Tc. The featured crystalline lattices (021) and (110) of PBS at 2θ = 21.5° and 22.5° gradually disappeared with PS content greater than 50 mol% and transformed into a PPS crystalline lattice at 2θ = 22.3°. Young's modulus decreased with increasing PS content due to crystallinity loss. Wide-angle X-ray diffraction demonstrated that the chain movement regularity was affected by the GC content, reducing the crystallinity. The PBSPS copolyesters were elastic with 0.001 mol% GC but became rigid with GC content greater than 0.01 mol%. The chain conformation was flexible for 0.001-0.01 mol% GC and exhibited an irregular steric architecture for 0.02-0.03 mol% GC due to more GC acting as nodes. Thus, the thermal and mechanical properties of the synthesized bio-based PBSPS copolyesters can be controlled by adjusting the GC content; therefore, such copolyesters are suitable for medical support, coating, and phase-change material applications.


Subject(s)
Butylene Glycols/chemistry , Glycerol/chemistry , Polymers/chemistry , Succinates/chemistry , Crystallization , Elasticity , Temperature
16.
Nanomaterials (Basel) ; 9(10)2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31569663

ABSTRACT

Elegant integration of three-dimensional (3D) boron nitride (BN) into the porous structure of a polymer nanofiber (NF) membrane system results in a surface with enhanced absorption capacity for removal. Various BN-based applications were designed and developed successfully, but BN-based absorption systems remain relatively unexplored. To develop a reusable absorption strategy with high removal efficiency, we used a composite of 3D BN and polyacrylonitrile (PAN) to prepare a NF membrane with a porous structure by using electrospinning and spray techniques (BN-PAN ES NFs). The removal efficiency of the 3D BN NF membrane was higher than that of a pure carbon NF membrane. Water pollutants, such as the dyes Congo red (CR), basic yellow 1 (BY), and rhodamine B (Rh B), were tested, and the absorption ratios were 46%, 53%, and 45%, respectively. Furthermore, the aforementioned dyes and pollutants can be completely eliminated and removed from water by heating because of the high heat resistance of 3D BN. The membrane can be recycled and reused at least 10 times. These results indicate that BN-PAN ES NFs have can be used in water purification and treatment for absorption applications, and that they can be reused after heat treatment.

17.
Nanoscale ; 11(4): 1520-1530, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30620020

ABSTRACT

Silver nanowire (AgNW) networks have attracted considerable attention as transparent electrodes for emerging flexible optoelectronics. However, the transference of such networks onto diverse arbitrary substrates with high conductivity remains a challenge because of the possibility of detaching and sliding occurring at the interface. Therefore, we developed a water-assisted transfer printing method for the fabrication and transfer of an AgNW-polydimethylsiloxane (PDMS) electrode. This innovative approach exhibits a robust ability for thin film transfer onto arbitrary substrates and has highly controlled and nondestructive characteristics. The obtained electrodes exhibited a high ratio of DC conductivity to optical conductivity of 200, a low sheet resistance of 9 Ω sq-1 at 82%, tensile strain (0% to 50%), and flexibility (bending radius of less than 2 mm) without significant loss of conductivity compared with devices fabricated through conventional methods. Furthermore, we demonstrated a novel textile-based flexible light-emitting electrochemical cell (PLEC) based on the stretchable AgNW-PDMS electrode and buckling concept, thereby realizing highly stretchable PLECs with excellent performance and mechanical robustness. The luminance intensity of the strained device was optimized to 58 cd m-2 at 7 V under 10% linear strain without damaging the electroluminescence properties. Notably, this effective and practical transfer method provides a way to develop electronic nanowire devices with unique configurations and high performances.

18.
ACS Appl Mater Interfaces ; 10(3): 2210-2215, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29308867

ABSTRACT

Cesium lead halide perovskite nanocrystals (NCs) with excellent intrinsic properties have been employed universally in optoelectronic applications but undergo hydrolysis even when exposed to atmospheric moisture. In the present study, composite CsPbX3 (X = Cl, Br, and I) perovskite NCs were encapsulated with stretchable (poly(styrene-butadiene-styrene); SBS) fibers by electrospinning to prepare water-resistant hybrid membranes as multicolor optical active layers. Brightly luminescent and color-tunable hydrophobic fiber membranes (FMs) with perovskite NCs were maintained for longer than 1 h in water. A unique remote FMs packaging approach was used in high-brightness perovskite light-emitting diodes (PeLEDs) for the first time.

19.
ACS Appl Mater Interfaces ; 9(19): 16381-16396, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28441012

ABSTRACT

Novel red-green-blue (RGB) switchable probes based on fluorescent porous electrospun (ES) nanofibers exhibiting high sensitivity to pH and mercury ions (Hg2+) were prepared with one type of copolymer (poly(methyl methacrylatete-co-1,8-naphthalimide derivatives-co-rhodamine derivative); poly(MMA-co-BNPTU-co-RhBAM)) by using a single-capillary spinneret. The MMA, BNPTU, and RhBAM moieties were designed to (i) permit formation of porous fibers, (ii) fluoresce for Hg2+ detection, and (iii) fluoresce for pH, respectively. The fluorescence emission of BNPTU (fluorescence resonance energy transfer (FRET) donor) changed from green to blue as it detected Hg2+. The fluorescence emission of RhBAM (FRET acceptor) was highly selective for pH, changing from nonfluorescent (pH 7) to exhibiting strong red fluorescence (pH 2). The full-color emission of the ES nanofibers included green, red, blue, purple, and white depending on the particular pH and Hg2+-concentration combination of the solution. The porous ES nanofibers with 30 nm pores were fabricated using hydrophobic MMA, low-boiling-point solvent, and at a high relative humidity (80%). These porous ES nanofibers had a higher surface-to-volume ratio than did the corresponding thin films, which enhanced their performance. The present study demonstrated that the FRET-based full-color-fluorescence porous nanofibrous membranes, which exhibit on-off switching and can be used as naked eye probes, have potential for application in water purification sensing filters.

20.
Polymers (Basel) ; 9(4)2017 Apr 10.
Article in English | MEDLINE | ID: mdl-30970816

ABSTRACT

Novel multifunctional switchable chemosensors based on fluorescent electrospun (ES) nanofibers with sensitivity toward magnetism, temperature, and mercury ions (Hg2+) were prepared using blends of poly(N-isopropylacrylamide)-co-(N-methylolacrylamide)-co-(Acrylic acid), the fluorescent probe 1-benzoyl-3-[2-(2-allyl-1,3-dioxo-2,3-dihydro-1Hbenzo[de]isoquinolin-6-ylamino)-ethyl]-thiourea (BNPTU), and magnetite nanoparticles (NPs), and a single-capillary spinneret. The moieties of N-isopropylacrylamide, N-methylolacrylamide, acrylic acid, BNPTU, and Iron oxide (Fe3O4) NPs were designed to provide thermoresponsiveness, chemical cross-linking, Fe3O4 NPs dispersion, Hg2+ sensing, and magnetism, respectively. The prepared nanofibers exhibited ultrasensitivity to Hg2+ (as low as 10-3 M) because of an 80-nm blueshift of the emission maximum (from green to blue) and 1.6-fold enhancement of the emission intensity, as well as substantial volume (or hydrophilic to hydrophobic) changes between 30 and 60 °C, attributed to the low critical solution temperature of the thermoresponsive N-isopropylacrylamide moiety. Such temperature-dependent variations in the presence of Hg2+ engendered distinct on⁻off switching of photoluminescence. The magnetic ES nanofibers can be collected using a magnet rather than being extracted through alternative methods. The results indicate that the prepared multifunctional fluorescent ES nanofibrous membranes can be used as naked eye sensors and have the potential for application in multifunctional environmental sensing devices for detecting metal ions, temperature, and magnetism as well as for water purification sensing filters.

SELECTION OF CITATIONS
SEARCH DETAIL
...