Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sleep ; 46(12)2023 12 11.
Article in English | MEDLINE | ID: mdl-37777337

ABSTRACT

STUDY OBJECTIVES: Limited channel electroencephalography (EEG) investigations in obstructive sleep apnea (OSA) have revealed deficits in slow wave activity (SWA) and spindles during sleep and increased EEG slowing during resting wakefulness. High-density EEG (Hd-EEG) has also detected local parietal deficits in SWA (delta power) during NREM. It is unclear whether effective continuous positive airway pressure (CPAP) treatment reverses regional SWA deficits, and other regional sleep and wake EEG abnormalities, and whether any recovery relates to improved overnight memory consolidation. METHODS: A clinical sample of men with moderate-severe OSA underwent sleep and resting wake recordings with 256-channel Hd-EEG before and after 3 months of CPAP. Declarative and procedural memory tasks were administered pre- and post-sleep. Topographical spectral power maps and differences between baseline and treatment were compared using t-tests and statistical nonparametric mapping (SnPM). RESULTS: In 11 compliant CPAP users (5.2 ±â€…1.1 hours/night), total sleep time did not differ after CPAP but N1 and N2 sleep were lower and N3 was higher. Centro-parietal gamma power during N3 increased and fronto-central slow spindle activity during N2 decreased (SnPM < 0.05). No other significant differences in EEG power were observed. When averaged specifically within the parietal region, N3 delta power increased after CPAP (p = 0.0029) and was correlated with the change in overnight procedural memory consolidation (rho = 0.79, p = 0.03). During resting wakefulness, there were trends for reduced delta and theta power. CONCLUSIONS: Effective CPAP treatment of OSA may correct regional EEG abnormalities, and regional recovery of SWA may relate to procedural memory improvements in the short term.


Subject(s)
Continuous Positive Airway Pressure , Sleep Apnea, Obstructive , Male , Humans , Sleep Apnea, Obstructive/therapy , Sleep , Electroencephalography , Brain
2.
Environ Health Perspect ; 131(3): 37012, 2023 03.
Article in English | MEDLINE | ID: mdl-36946580

ABSTRACT

BACKGROUND: Large electricity-generating wind turbines emit both audible sound and inaudible infrasound at very low frequencies that are outside of the normal human range of hearing. Sufferers of wind turbine syndrome (WTS) have attributed their ill-health and particularly their sleep disturbance to the signature pattern of infrasound. Critics have argued that these symptoms are psychological in origin and are attributable to nocebo effects. OBJECTIVES: We aimed to test the effects of 72 h of infrasound (1.6-20 Hz at a sound level of ∼90 dB pk re 20µPa, simulating a wind turbine infrasound signature) exposure on human physiology, particularly sleep. METHODS: We conducted a randomized double-blind triple-arm crossover laboratory-based study of 72 h exposure with a >10-d washout conducted in a noise-insulated sleep laboratory in the style of a studio apartment. The exposures were infrasound (∼90 dB pk), sham infrasound (same speakers not generating infrasound), and traffic noise exposure [active control; at a sound pressure level of 40-50 dB LAeq,night and 70 dB LAFmax transient maxima, night (2200 to 0700 hours)]. The following physiological and psychological measures and systems were tested for their sensitivity to infrasound: wake after sleep onset (WASO; primary outcome) and other measures of sleep physiology, wake electroencephalography, WTS symptoms, cardiovascular physiology, and neurobehavioral performance. RESULTS: We randomized 37 noise-sensitive but otherwise healthy adults (18-72 years of age; 51% female) into the study before a COVID19-related public health order forced the study to close. WASO was not affected by infrasound compared with sham infrasound (-1.36 min; 95% CI: -6.60, 3.88, p=0.60) but was worsened by the active control traffic exposure compared with sham by 6.07 min (95% CI: 0.75, 11.39, p=0.02). Infrasound did not worsen any subjective or objective measures used. DISCUSSION: Our findings did not support the idea that infrasound causes WTS. High level, but inaudible, infrasound did not appear to perturb any physiological or psychological measure tested in these study participants. https://doi.org/10.1289/EHP10757.


Subject(s)
COVID-19 , Power Plants , Humans , Adult , Female , Male , Cross-Over Studies , Noise/adverse effects , Sleep
3.
J Sleep Res ; 28(6): e12838, 2019 12.
Article in English | MEDLINE | ID: mdl-30821056

ABSTRACT

Electroencephalography is collected routinely during clinical polysomnography, but is often utilised to simply determine sleep time to calculate apnea-hypopnea indices. Quantitative analysis of these data (quantitative electroencephalogram) may provide trait-like information to predict patient vulnerability to sleepiness. Measurements of trait-like characteristics need to have high test-retest reliability. We aimed to investigate the intra-individual stability of slow-wave (delta power) and spindle frequency (sigma power) activity during non-rapid eye movement sleep in patients with obstructive sleep apnea. We recorded sleep electroencephalograms during two overnight polysomnographic recordings in 61 patients with obstructive sleep apnea (median days between studies 47, inter-quartile range 53). Electroencephalograms recorded at C3-M2 derivation were quantitatively analysed using power spectral analysis following artefact removal. Relative delta (0.5-4.5 Hz) and sigma (12-15 Hz) power during non-rapid eye movement sleep were calculated. Intra-class correlation coefficients and Bland-Altman plots were used to assess agreement between nights. Intra-class correlation coefficients demonstrated good-to-excellent agreement in the delta and sigma frequencies between nights (intra-class correlation coefficients: 0.84, 0.89, respectively). Bland-Altman analysis of delta power showed a mean difference close to zero (-0.4, 95% limits of agreement -9.4, 8.7) and no heteroscedasticity with increasing power. Sigma power demonstrated heteroscedasticity, with reduced stability as sigma power increased. The mean difference of sigma power between nights was close to zero (0.1, 95% limits -1.6, 1.8). We have demonstrated the stability of slow-wave and spindle frequency electroencephalograms during non-rapid eye movement sleep within patients with obstructive sleep apnea. The electroencephalogram profile during non-rapid eye movement sleep may be a useful biomarker for predicting vulnerability to daytime impairment in obstructive sleep apnea and responsiveness to treatment.


Subject(s)
Electroencephalography/methods , Individuality , Polysomnography/methods , Sleep Apnea, Obstructive/physiopathology , Sleep Stages/physiology , Adult , Aged , Electroencephalography/standards , Female , Humans , Male , Middle Aged , Polysomnography/standards , Reproducibility of Results , Sleep Apnea, Obstructive/diagnosis , Wakefulness/physiology
4.
Eur Respir J ; 52(1)2018 07.
Article in English | MEDLINE | ID: mdl-29976648

ABSTRACT

Hypnotic use in obstructive sleep apnoea (OSA) is contraindicated due to safety concerns. Recent studies indicate that single-night hypnotic use worsens hypoxaemia in some and reduces OSA severity in others depending on differences in pathophysiology. However, longer clinical trial data are lacking. This study aimed to determine the effects of 1 month of zopiclone on OSA severity, sleepiness and alertness in patients with low-moderate respiratory arousal thresholds without major overnight hypoxaemia.69 participants completed a physiology screening night with an epiglottic catheter to quantify arousal threshold. 30 eligible patients (apnoea-hypopnoea index (AHI) 22±11 events·h-1) then completed standard in-laboratory polysomnography (baseline) and returned for two additional overnight sleep studies (nights 1 and 30) after receiving either nightly zopiclone (7.5 mg) or placebo during a 1-month, double-blind, randomised, parallel trial (ANZCTR identifier ANZCTRN12613001106729).The change in AHI from baseline to night 30 was not different between zopiclone versus placebo groups (-5.9±10.2 versus -2.4±5.5 events·h-1; p=0.24). Similarly, hypoxaemia, next-day sleepiness and driving simulator performance were not different.1 month of zopiclone does not worsen OSA severity, sleepiness or alertness in selected patients without major overnight hypoxaemia. As the first study to assess the effect of a hypnotic on OSA severity and sleepiness beyond single-night studies, these findings provide important safety data and insight into OSA pathophysiology.


Subject(s)
Azabicyclo Compounds/administration & dosage , Hypnotics and Sedatives/administration & dosage , Piperazines/administration & dosage , Sleep Apnea, Obstructive/drug therapy , Sleep Apnea, Obstructive/physiopathology , Adult , Arousal/drug effects , Azabicyclo Compounds/adverse effects , Double-Blind Method , Drug Administration Schedule , Female , Humans , Hypnotics and Sedatives/adverse effects , Male , Middle Aged , Piperazines/adverse effects , Polysomnography , Severity of Illness Index , Sleep/drug effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...